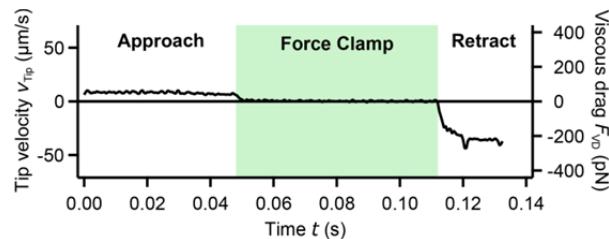
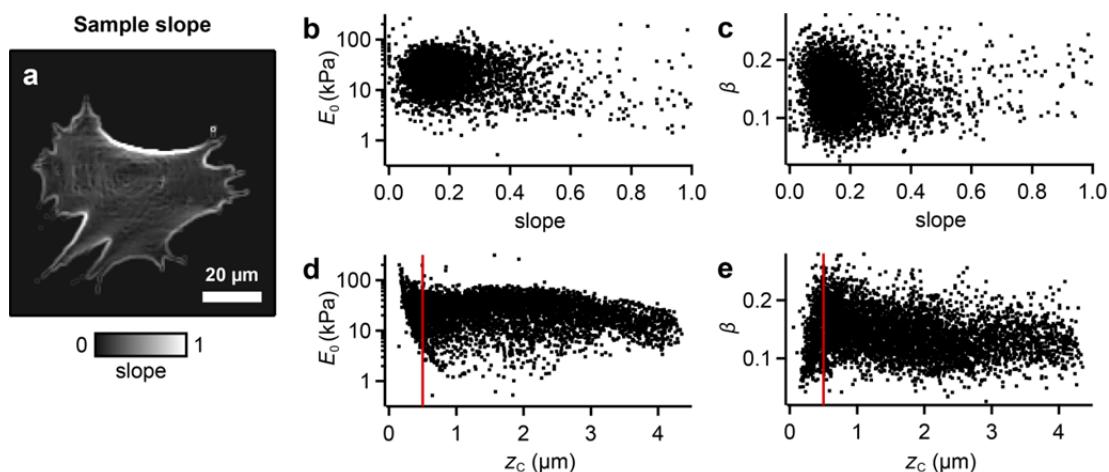


Supplemental Material

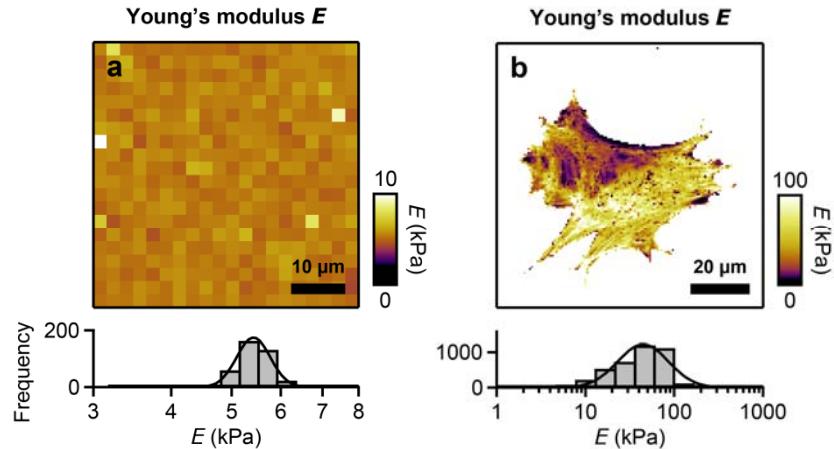
Imaging viscoelastic properties of live cells by AFM: Power-law rheology on the nanoscale

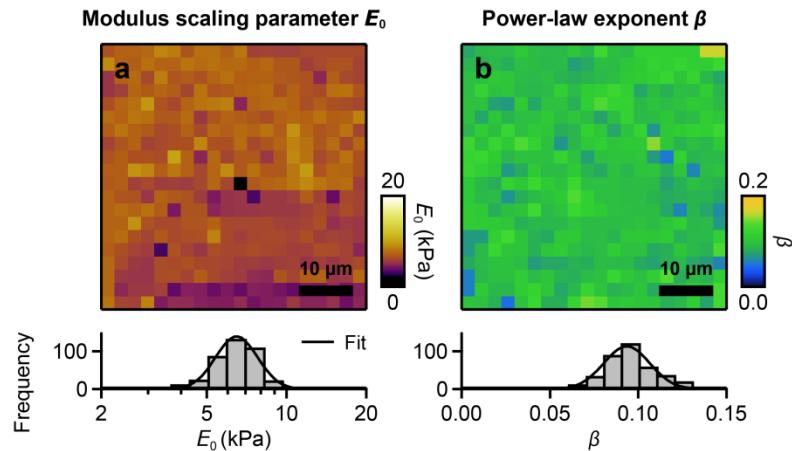

F. M. Hecht,^{a†} J. Rheinlaender,^{a†} N. Schierbaum,^a W. H. Goldmann,^b B. Fabry,^b and T. E. Schäffer^{*a}

^a Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.


^b Department of Physics, University of Erlangen-Nuremberg, Henkestraße 91, 91052 Erlangen, Germany.

† Both authors contributed equally to this publication.


* E-mail: tilman.schaeffer@uni-tuebingen.de


Fig. S1 Estimation of the viscous drag force acting on the cantilever, generated by the cantilever's motion through the surrounding liquid, for the data shown in Figure 1. The tip velocity $v_{\text{Tip}}(t)$ was calculated as the time derivative of the tip position, $z(t) - d(t)$. The viscous drag force F_{VD} was estimated from the tip velocity using $F_{\text{VD}} = \mu v_{\text{Tip}}$, where μ is the viscous drag coefficient of the cantilever. For the cantilevers used here, the drag coefficient was determined as $\mu = 6.2 \text{ pN} (\mu\text{m/s})^{-1}$ in a separate measurement (data not shown). We found that for the conditions used here, the influence of the tip-sample distance on the drag coefficient was negligible.

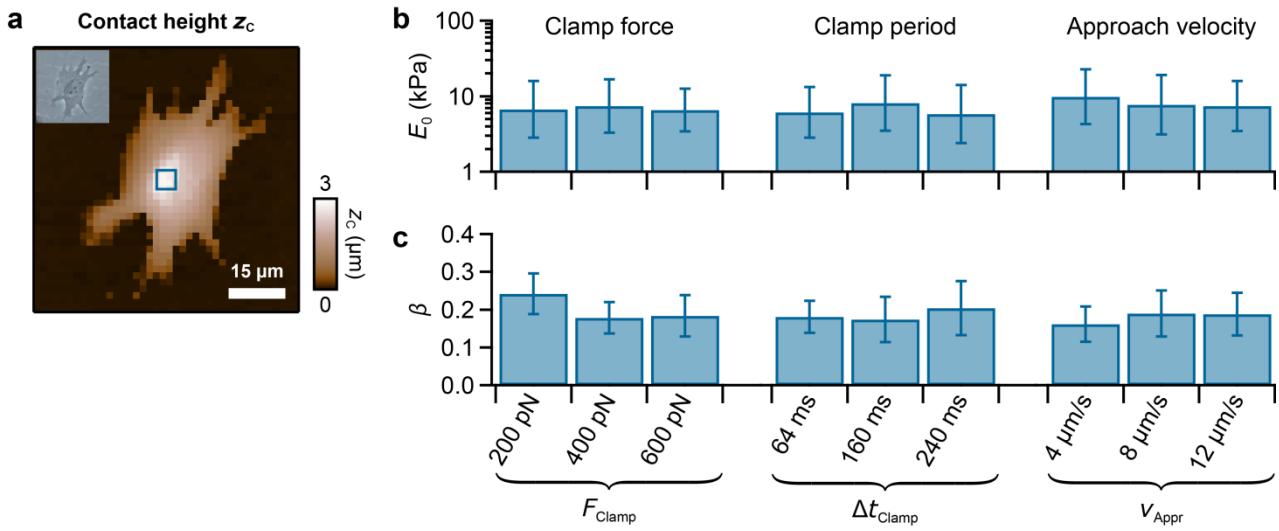

Fig. S2 Correlation of modulus scaling parameter E_0 and power-law exponent β vs sample slope and height for the cell shown in Figure 2. (a) Image of the sample slope, $[(dz_c/dx)^2 + (dz_c/dy)^2]^{1/2}$. (b) E_0 and (c) β as a function of sample slope. Neither the modulus scaling parameter E_0 nor the power-law exponent β show a significant correlation with sample slope. (d) E_0 and (e) β as a function of sample height. E_0 and β show a visible correlation only for heights smaller than about 500 nm (red line).

Fig. S3 Maps of the apparent Young's modulus E of (a) the polyacrylamide (PAA) gel from Figure 2 and (b) the MEF vin-/ cell from Figure 3, obtained when applying a purely elastic contact model to the approach part of the force-distance curves. The Young's moduli are slightly larger than the respective modulus scaling parameters (Figure 2 and Figure 3, respectively).

Fig. S4 Force clamp force mapping (FCFM) on the same polyacrylamide (PAA) gel as in Figure 2, but recorded with a DNP type cantilever. (a) Map and histogram of the modulus scaling parameter E_0 . (b) Map and histogram of the power-law exponent β . Pixel resolution is 20×20 pixels. The mean values ($E_0 = 6.4$ kPa and $\beta = 0.092$) are in well agreement with the values obtained with the MLCT type cantilever from Figure 2 ($E_0 = 5.3$ kPa and $\beta = 0.091$), demonstrating the reliability of the FCFM method. The small difference in E_0 could be explained by the inaccuracy in the determination of the cantilevers' spring constants (typically 10 – 20%).¹

Fig. S5 Power-law parameters E_0 and β for different experimental parameters. (a) Map of contact height z_c of a MEF WT cell. (b) Modulus scaling parameter E_0 and (c) power-law exponent β for different experimental parameters F_{Clamp} , Δt_{Clamp} , and v_{Appr} , recorded within a small region on the cell (5 μ m \times 5 μ m, 10 \times 10 pixels, marked by the box in panel a). Median \pm standard deviation is shown. Neither the mean values nor the standard deviations depend considerably on the different experimental parameters.

References

- 1 C. T. Gibson, D. J. Johnson, C. Anderson, C. Abell and T. Rayment, *Rev. Sci. Instrum.*, 2004, 75, 565-567.