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I. CALIBRATION CURVE FOR THE ACOUSTICALLY DRIVEN MICROFLU-

IDIC EXTENSION RHEOMETER

A rational function of the following form is chosen to fit the experimental t∗
1/2-vs-Oh data:

t∗1/2 =
K0 +K1 Oh +K2 Oh2

1 +Oh
. (1)

With this expression, as Oh→ 0, t∗
1/2 →K0, and when Oh→∞, t∗

1/2 →K2 Oh.

To fix the constants K0 and K2, we consider a simple toy model. The thinning of perfectly

cylindrical filaments can be modeled by an inertio-viscous capillary stress balance:(Entov

and Hinch, 1997; McKinley and Sridhar, 2002; Rodd et al., 2005; Tirtaatmadja et al., 2006)
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2
ρṘ2 = (2X − 1) γ

R
+ 6 ηs Ṙ

R
, (2)

where X is the ratio of the instantaneous axial tension in the liquid bridge and 2πγR. If X

is treated as a constant, the algebro-differential equation above can be treated as a quadratic

equation above for Ṙ at any R and t. The negative root of the rescaled equation,

dR∗

dt∗
= −6 Oh

R∗ (
√

1 +C R∗ − 1) , (3)

where C = (2X − 1)/18 can be integrated with R∗ = 1 as the initial condition to obtain

t∗1/2 =
1

36C2
[4 {(Oh2 +C )3/2 − (Oh2 + C

2
)
3/2

} + 3COh] . (4)

The equation recovers the expected results in the limits Oh → 0 where t∗
1/2 approaches a

constant (= (23/2 − 1)/(6
√

2X − 1), and when Oh →∞ where t∗
1/2 increase linearly with Oh

(t∗
1/2 → 3 Oh/(2X − 1)).
Strictly speaking, X itself depends on time; it has been shown however that, if the neck

diameter is significantly smaller than the two drops at the end plates, the axial filament

profile and its dynamics can be well approximated as being self-similar. As mentioned earlier,

we begin taking measurements of R only after the neck is well formed with a radius about half

the drop radius at the end-plate. The values of X given by similarity solutions under different

conditions have been summarized by McKinley and Tripathy(McKinley and Tripathi, 2000).

When inertia is important and Oh ≪ 1, X = 0.5912 is the value most likely to be observed

in an experiment(McKinley and Tripathi, 2000; Eggers, 1997a,b) and hence t∗
1/2 → 0.7135 as
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Oh→ 0. When viscosity is dominant on the other hand, X = 0.7127(McKinley and Tripathi,

2000; Papageorgiou, 1995) and t∗
1/2 → 7.0522 Oh as Oh→∞.

These asymptotic predictions suggest therefore the values of K0 = 0.7135 and K2 = 7.0522

in in Eqn. (1) for the empirical calibration curve. Although the model presented above is

expected to be accurate only when the axial curvature of the filament is small, we surpris-

ingly find good agreement of the asymptotic behaviours predicted with the experimental

data shown in Fig. 2 of the main text. We therefore use the values above for K0 and K2

in Eqn. (1) and determine K1 = 14.7 ± 0.2 by linear regression of the curve through the

experimental t∗
1/2-vs-Oh data. The reasons behind this good agreement with the asymptotic

trends predicted by the toy model are unknown. It is possible that this is a fortuitous result

of the combination of the liquid-bridge aspect ratio, the Bond number and the range of Oh

values in our experiments. A different choice of these parameters may require K0 and K2

also to be determined by regression.

II. CAPILLARY THINNING DATA FOR CELL SUSPENSIONS

FIG. 1. Capillary thinning of liquid bridges of mouse sperm suspensions
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FIG. 2. Capillary thinning of liquid bridges of suspensions of E. coli
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FIG. 3. Capillary thinning of liquid bridges of suspensions of D. tertiolecta; red, blue and white

symbols correspond to live and dead cell suspensions, and pure buffer, respectively.
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FIG. 4. Strain-rate variation with volume fraction of live (red circles) and dead (blue triangles)

cell suspensions; smooth curves are cubic polynomial fits through data.
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III. ADDITIONAL INFORMATION FOR THE VISCOSITY MODEL

M
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FIG. 5. The function M(x)

The function (Fig. 5)

M(x) = 1

2xD(x) −
1

2x2
, (5)

where D(x) = exp(−x2) ∫
x

0 exp(y2)dy is Dawson’s integral. In the equation for the intrinsic

extensional viscosity in the main text, x =
√

3 β̃ Pe/4. As x→ 0, M = 1/3+4/45x2 +O(x4) =
1/3+ β̃Pe/15+O(Pe2), and when x→∞, M(x) = 1−x−2 +O(x−4) = 1− 4/(3β̃Pe) +O(Pe−2).
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