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Supporting information A 

A1.  Determination of the free energy and APCA for a sagged state 

The free surface energy for a sagged state (GMsag
unit

) is expressed in terms of the surface 

chemistry (θY), interfacial tension (γLA), the LA interfacial area (ALA
unit

) and the SL interfacial 

area (ASL
unit

) (equations A1-A3). It is assumed that the LA interface is pinned to the center of the 

unit, thereby forming a square pyramid. The free surface energy can be reduced to a 

dimensionless form (GMsag
*
) (equation A4). The dimensionless free surface energy is expressed 

in terms of the APCA for the sagged state (θMsag) and the wetting parameter (jMsag){Sarkar, 2013 

#1314}.  

                                       𝐺𝑀𝑠𝑎𝑔
𝑢𝑛𝑖𝑡 =  𝛾𝐿𝐴(𝐴𝐿𝐴

𝑢𝑛𝑖𝑡−𝐴𝑆𝐿
𝑢𝑛𝑖𝑡 cos 𝜃𝑌) A1)  

                                  𝐴𝐿𝐴
𝑢𝑛𝑖𝑡 =

2(𝑎+𝑏)2

1+𝑐𝑜𝑠 𝜃𝑀𝑠𝑎𝑔
+ 2𝑎𝑏 + 𝑏√𝑏2 + 4𝑐2 A2)  

                                                            𝐴𝑆𝐿
𝑢𝑛𝑖𝑡 = 𝑎2 A3)  

                                    𝐺𝑀𝑠𝑎𝑔
∗ =

𝐺𝑀𝑠𝑎𝑔
𝑢𝑛𝑖𝑡

 𝛾𝐿𝐴(𝑎+𝑏)2 =
2

1+𝑐𝑜𝑠 𝜃𝑀𝑠𝑎𝑔
+ 1 + 𝑗𝑀𝑠𝑎𝑔  A4)  

Where  

                                        𝑗𝑀𝑠𝑎𝑔 = − (
𝑎

𝑎+𝑏
)

2

(1 + cos 𝜃𝑌) +
𝑏√𝑏2+4𝑐2−𝑏2

(𝑎+𝑏)2  A5)  

Upon minimization of surface energy minimization, the wetting parameter jMsag can be directly 

correlated with θMsag (equation A6).  

                                                 
𝑑𝑗𝑀𝑠𝑎𝑔

𝑑𝜃𝑀𝑠𝑎𝑔
= 0; 1 + 𝑐𝑜𝑠 𝜃𝑀𝑠𝑎𝑔 + 𝑗𝑀𝑠𝑎𝑔 = 0 A6)  

Using equations A5 and A6, an empirical relationship can be found for θMsag (equation A7).         

                               𝑐𝑜𝑠 𝜃𝑀𝑠𝑎𝑔 = (
𝑎

𝑎+𝑏
)

2

(1 + cos 𝜃𝑌) − 1 +
𝑏2+𝑏√𝑏2+4𝑐2

(𝑎+𝑏)2   A7)  

  

                 



3 

 

A2.  Domain of surface parameters for a thermodynamically feasible sagged state 

For a sagged state to be thermodynamically feasible, θMsag should assume geometrically 

realizable values (equation A8). Equation A8 comprises two inequalities and is consequently 

simplified (equations A9-A12). 

                                                            −1 ≤ cosθMsag ≤ 1 A8)  

                                   −1 ≤ (
a

a+b
)

2

(1 + cos θY) − 1 +
𝑏2−𝑏√𝑏2+4𝑐2

(𝑎+𝑏)2 ≤ 1  A9)  

                                                0 ≤
𝑎2(1+𝑐𝑜𝑠 𝜃𝑌)+𝑏2−𝑏√𝑏2+4𝑐2

(𝑎+𝑏)2
≤ 2  A10)  

                             0 ≤ 𝑎2(1 + 𝑐𝑜𝑠 𝜃𝑌) + 𝑏2 − 𝑏√𝑏2 + 4𝑐2 ≤ 2(𝑎 + 𝑏)2  A11)  

                 𝑏√𝑏2 + 4𝑐2 ≤ 𝑎2(1 + 𝑐𝑜𝑠 𝜃𝑌) + 𝑏2 ≤ 2(𝑎 + 𝑏)2 + 𝑏√𝑏2 + 4𝑐2  A12)  

Equation A12 is split into two inequalities (equations A13 and A14). Since the cosine of a 

function must be bounded by -1 and 1, both equations A13 and A14 must be correct. 

                               𝑎2(1 + 𝑐𝑜𝑠 𝜃𝑌) + 𝑏2 ≤ 2(𝑎 + 𝑏)2 + 𝑏√𝑏2 + 4𝑐2  A13)  

                                                   𝑏√𝑏2 + 4𝑐2 ≤ 𝑎2(1 + 𝑐𝑜𝑠 𝜃𝑌) + 𝑏2               A14)  

Equation A13 can be expressed as the sum of equations A15 and A16, which are individually 

true without any loss of generality. Hence, equation A13 is always correct.  

                                          𝑎2(1 + 𝑐𝑜𝑠 𝜃𝑌) ≤ 2𝑎2 ≤ 2(𝑎 + 𝑏)2  A15)  

                                                  𝑏2 ≤  𝑏√𝑏2 + 4𝑐2 A16)  

Thus, the sagged state is feasible if and only if equation A14 is true. Equation A14 is squared and 

simplified to give the range of permissible spacing to width ratios (equations A17-A20). The 

spacing to width ratio is limited by a maximum value, here termed as sagged spacing to width 

ratio.  

                        𝑏4 + 4𝑏2𝑐2 ≤ 𝑏4 + 𝑎4(1 + 𝑐𝑜𝑠 𝜃𝑌)2 + 2𝑏2𝑎2(1 + 𝑐𝑜𝑠 𝜃𝑌)                A17)  
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                                   4𝑏2𝑐2 ≤ 𝑎4(1 + 𝑐𝑜𝑠 𝜃𝑌)2 + 2𝑏2𝑎2(1 + 𝑐𝑜𝑠 𝜃𝑌) A18)  

                                  𝑏2(4𝑐2 − 2𝑎2(1 + 𝑐𝑜𝑠 𝜃𝑌)) ≤ 𝑎4(1 + 𝑐𝑜𝑠 𝜃𝑌)2 A19)  

                                                           
𝑏

𝑎
≤ (

𝑏

𝑎
)𝑠𝑎𝑔 =

(1+𝑐𝑜𝑠 𝜃𝑌)

√4
𝑐2

𝑎2−2(1+𝑐𝑜𝑠 𝜃𝑌)

  A20)  

However, the sagged limit must exceed the critical limit for θY > 90°. The difference between the 

sagged limit and the critical limit is plotted with respect to the height to width ratio (c/a) for 

multiple surface chemistries (figure A1). For θY > 105°, the critical limit exceeds the sagged 

limit, and hence a feasible sagged limit cannot exist for the corresponding surface chemistries.  

    
 Figure A1 Variation of difference in sagged and critical limits with pillar height to width ratios 

 

It is seen that the sagged limit assumes a real, positive value for a pillar height to width ratio 

greater than 0.7.The sagged limit exceeds the critical limit for 90° < θY < 105° (figure A2). 
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Figure A2 Domain of permissible height to width ratios and surface chemistry 
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Supporting information B: General equation of wettability for square pillar geometry 

For a depinned state to exist, the APCA (θMdep) should hold appropriate values for surfaces with 

θY > 90° (equation B1). The APCA of a depinned state shares an implicit correlation with the 

penetration depth, and is given as the characteristic set of equations (Sarkar and Kietzig 2013) 

(equation B2). 

where = (2 + 𝑐𝑜𝑠 𝜃𝐶𝐵)
1

3(1 − 𝑐𝑜𝑠 𝜃𝐶𝐵)
2

3(1 − 𝑐𝑜𝑠 𝜃𝑀𝑑𝑒𝑝)
1

3(2 + 𝑐𝑜𝑠 𝜃𝑀𝑑𝑒𝑝)
2

3 . 

The aforementioned symbols are presented in Table 1. The expression φ is a non-linear function 

of θMdep and θCB. 

Table B1: Glossary of the symbols used 

Symbol Description 

θY Young’s contact angle (YCA) 

a Width of micrometer sized pillar 

b Spacing between consecutive pillars 

h Penetration depth of liquid in roughness valleys. 

θMdep Apparent contact angle (APCA) corresponding to h>0 

θCB Cassie contact angle 

 Φ Nonlinear function of θCB and θMdep 

 

To analyze the surface characteristics related to equation B2, it is extremely important to convert 

the fractional exponents of φ to linear formulations. To aid the simplification, the number B1 is 

                        ∀𝜃𝑌 ≥ 90°;  0° ≤ 𝜃𝑀𝑑𝑒𝑝 ≤ 180°; −1 ≤ cos 𝜃𝑀𝑑𝑒𝑝 ≤ 1 B1)    

4𝑎ℎ𝑐𝑜𝑠𝜃𝑌(1 + 𝑐𝑜𝑠 𝜃𝑀𝑑𝑒𝑝)

(𝑎 + 𝑏)2
+ 𝑐𝑜𝑠 𝜃𝐶𝐵(1 + cos 𝜃𝑀𝑑𝑒𝑝) − 2 + 𝜑 = 0 B2) 



7 

 

rearranged as the product of 4 non-linear functions of cosθCB, such that two of the functions are 

reciprocals to each other (equation B3). 

The expression φ is multiplied with equation B3 (equation B4). 

On simplification, φ is re-written as a product of two linear functions and two non-linear 

functions, where the nonlinear functions are expressed as ratios of cosθCB (equation B5). 

Next, the part of the expression consisting of a nonlinear expression of cosθMdep must be 

linearized. The difference in the cosines of θMdep and θCB, δ, plays an important role in the 

conversion of the nonlinear function to its linear counterpart (equation B6).     

The two nonlinear functions present in φ (equation B5) are individually simplified. The cosine of 

θMdep is expressed in terms of δ, and  

In the next steps, binomonal equation of fractional exponents is used to simplify and expand φ. 

The binomial expansion of an algebraic function with a coefficient s and a fractional exponent n 

is given as follows. 

1 = (2 + 𝑐𝑜𝑠 𝜃𝐶𝐵)
2
3(2 + 𝑐𝑜𝑠 𝜃𝐶𝐵)−

2
3(1 − 𝑐𝑜𝑠 𝜃𝐶𝐵)

1
3(1 − 𝑐𝑜𝑠 𝜃𝐶𝐵)−

1
3 B3) 

𝜑(1) = 𝜑(2 + 𝑐𝑜𝑠 𝜃𝐶𝐵)
2
3(2 + 𝑐𝑜𝑠 𝜃𝐶𝐵)−

2
3(1 − 𝑐𝑜𝑠 𝜃𝐶𝐵)

1
3(1 − 𝑐𝑜𝑠 𝜃𝐶𝐵)−

1
3 B4) 

                         𝜑 = (2 + 𝑐𝑜𝑠 𝜃𝐶𝐵)(1 − 𝑐𝑜𝑠 𝜃𝐶𝐵) (
1−𝑐𝑜𝑠 𝜃𝑀𝑑𝑒𝑝

1−𝑐𝑜𝑠 𝜃𝐶𝐵
)

1

3
(

2+𝑐𝑜𝑠 𝜃𝑀𝑑𝑒𝑝

2+𝑐𝑜𝑠 𝜃𝐶𝐵
)

2

3
  

B5) 

                               𝛿 = 𝑐𝑜𝑠 𝜃𝑀𝑑𝑒𝑝 − 𝑐𝑜𝑠 𝜃𝐶𝐵 ;  ∴ 𝑐𝑜𝑠 𝜃𝑀𝑑𝑒𝑝 = 𝛿 + 𝑐𝑜𝑠 𝜃𝐶𝐵 B6) 

                                                                         (
1−𝑐𝑜𝑠 𝜃𝑀𝑑𝑒𝑝

1−𝑐𝑜𝑠 𝜃𝐶𝐵
)

1

3
= (1 −

𝛿

1−𝑐𝑜𝑠 𝜃𝐶𝐵
)

1

3 B7) 

                                                                          (
2+𝑐𝑜𝑠 𝜃𝑀𝑑𝑒𝑝

2+𝑐𝑜𝑠 𝜃𝐶𝐵
)

2

3
= (1 +

𝛿

2+𝑐𝑜𝑠 𝜃𝐶𝐵
)

2

3  
B8) 
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Using binomial expansion, equations B7 and B8 are simplified to the 3
rd

 term (equations B10-

B13).  

Upon simplification, equations B11 and B13 are multiplied. Since δ is the difference between 

two cosines, its absolute value is always less than unity. Hence, the coefficients of the higher 

exponents δ (δ
3
 and δ

 4
) are neglected (equation B 14).  

Equation 14 is substituted in equation B5 (equation B15).  

The parameter δ
 
is expressed in terms of θCB and θMdep (equation B17). 

(1 + 𝑠)𝑛 = 1 + 𝑛𝑠 +
𝑛(𝑛 − 1)

2!
𝑠2 +

𝑛(𝑛 − 1)(𝑛 − 2)

3!
𝑠3

+
𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

4!
𝑠4 

B9) 

                                (1 −
𝛿

1−𝑐𝑜𝑠 𝜃𝐶𝐵
)

1

3 = 1 +
1

3
(−

𝛿

1−𝑐𝑜𝑠 𝜃𝐶𝐵
) +

1

3
(

1

3
− 1)

1

2!
(−

𝛿

1−𝑐𝑜𝑠 𝜃𝐶𝐵
)

2

 B10)  

                                                 (1 −
𝛿

1−𝑐𝑜𝑠 𝜃𝐶𝐵
)

1

3 = 1 −
𝛿

3(1−𝑐𝑜𝑠 𝜃𝐶𝐵)
−

𝛿2

9(1−𝑐𝑜𝑠 𝜃𝐶𝐵)2 B11)  

                                (1 +
𝛿

2+𝑐𝑜𝑠 𝜃𝐶𝐵
)

2

3 = 1 +
2

3
(

𝛿

2+𝑐𝑜𝑠 𝜃𝐶𝐵
) +

2

3
(

2

3
− 1)

1

2!
(

𝛿

2+𝑐𝑜𝑠 𝜃𝐶𝐵
)

2

 B12)  

                                                 (1 +
𝛿

2+𝑐𝑜𝑠 𝜃𝐶𝐵
)

2

3 = 1 +
2𝛿

3(2+𝑐𝑜𝑠 𝜃𝐶𝐵)
−

𝛿2

9(2+𝑐𝑜𝑠 𝜃𝐶𝐵)2 B13)  

(1 −
𝛿

1−𝑐𝑜𝑠 𝜃𝐶𝐵
)

1

3(1 +
𝛿

2+𝑐𝑜𝑠 𝜃𝐶𝐵
)

2

3 = 1 −
𝛿 cos 𝜃𝐶𝐵

(1−𝑐𝑜𝑠 𝜃𝐶𝐵)(2+𝑐𝑜𝑠 𝜃𝐶𝐵)
−

𝛿2

(1−𝑐𝑜𝑠 𝜃𝐶𝐵)2(2+𝑐𝑜𝑠 𝜃𝐶𝐵)2    B14)  

𝜑 = (2 + 𝑐𝑜𝑠 𝜃𝐶𝐵)(1 − 𝑐𝑜𝑠 𝜃𝐶𝐵)(1 −
𝛿 𝑐𝑜𝑠 𝜃𝐶𝐵

(1 − 𝑐𝑜𝑠 𝜃𝐶𝐵)(2 + 𝑐𝑜𝑠 𝜃𝐶𝐵)

−
𝛿2

(1 − 𝑐𝑜𝑠 𝜃𝐶𝐵)2(2 + 𝑐𝑜𝑠 𝜃𝐶𝐵)2
) 

B15)  

                       𝜑 = (2 + 𝑐𝑜𝑠 𝜃𝐶𝐵)(1 − 𝑐𝑜𝑠 𝜃𝐶𝐵) − 𝛿 𝑐𝑜𝑠 𝜃𝐶𝐵 −
𝛿2

(1−𝑐𝑜𝑠 𝜃𝐶𝐵)(2+𝑐𝑜𝑠 𝜃𝐶𝐵)  B16)  



9 

 

The simplified form of φ is substituted to equation B2 (equation B18). 

Equation B18 is re-arranged to generate a quadratic expression of cosθMdep (equation B19). 

where 𝜏 =
4𝑎ℎ𝑐𝑜𝑠𝜃𝑌(1−𝑐𝑜𝑠 𝜃𝐶𝐵)(2+𝑐𝑜𝑠 𝜃𝐶𝐵)

(𝑎+𝑏)2   

Equation B19 marks the first instance, where the APCA for a depinned state θMdep is expressed as 

a function of θY, h, a, b. Thus, to have a realizable θMdep, the discriminant of equation B19 (Δ) 

must be positive (necessary condition, equation B20). In addition, one root of equation B19 must 

possess a realizable value (sufficient condition, equation B1).  

NECESSARY CONDITION: Δ > 0 

The discriminant (Δ) is expressed as the product of two functions, namely τ and (τ+4+4cosθCB). 

For Δ > 0, both the functions must possess the identical sign. A case study is performed, where 

we analyze the ramifications when both the functions are positive (case i) or negative (case ii). 

Case i: τ > 0, and (𝜏 + 4 + 4 𝑐𝑜𝑠 𝜃𝐶𝐵) > 0 

Case ii: τ < 0 and (𝜏 + 4 + 4 𝑐𝑜𝑠 𝜃𝐶𝐵) < 0 

The above mentioned cases are analyzed as follows. 

Case i 

The function τ is a product of several expressions.  

                                 𝜑 = 2 − 𝑐𝑜𝑠 𝜃𝐶𝐵(1 + 𝑐𝑜𝑠 𝜃𝑀𝑑𝑒𝑝) −
(𝑐𝑜𝑠 𝜃𝑀𝑑𝑒𝑝−𝑐𝑜𝑠 𝜃𝐶𝐵)2

(1−𝑐𝑜𝑠 𝜃𝐶𝐵)(2+𝑐𝑜𝑠 𝜃𝐶𝐵)  B17)  

                                             

4𝑎ℎ𝑐𝑜𝑠𝜃𝑌(1+𝑐𝑜𝑠 𝜃𝑀𝑑𝑒𝑝)

(𝑎+𝑏)2 −
(𝑐𝑜𝑠 𝜃𝑀𝑑𝑒𝑝−𝑐𝑜𝑠 𝜃𝐶𝐵)2

(1−𝑐𝑜𝑠 𝜃𝐶𝐵)(2+𝑐𝑜𝑠 𝜃𝐶𝐵)
= 0 B18)  

                         𝑐𝑜𝑠2 𝜃𝑀𝑑𝑒𝑝 + 𝑐𝑜𝑠 𝜃𝑀𝑑𝑒𝑝 (−2 𝑐𝑜𝑠 𝜃𝐶𝐵 − 𝜏) + (𝑐𝑜𝑠2 𝜃𝐶𝐵 − 𝜏) = 0 B19)  

                         ∆= (−2 𝑐𝑜𝑠 𝜃𝐶𝐵 − 𝜏)2 − 4(𝑐𝑜𝑠2 𝜃𝐶𝐵 − 𝜏) = 𝜏(𝜏 + 4 + 4 𝑐𝑜𝑠 𝜃𝐶𝐵) B20)  
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The terms a, (a+b)
2
, h, (2+cos θCB) and (1-cos θCB) are each positive. Thus, the expression is 

true when cos θY>0. 

The domain of case i is mutually exclusive to that in the current discussion (θY>90°, equation B 

1). Since case i falls beyond the scope of this discussion, it is not analyzed any further. 

Case ii 

For case ii to be true, each of the expressions τ and (τ+4+4cosθCB) ought to be negative. From the 

analysis of case i, it can be inferred that θY >90° (which is compatible with the domain of θY in 

discussion) is associated with τ<0. Thus, the sufficient condition can be determined by 

pinpointing the surface characteristics with τ+4+4cosθCB < 0 (equation B23).   

Equation B23 is simplified to render the surface characteristics for case ii, and hence, the 

phenomenon of a depinned state for a surface with θY >90°.Since cos θY <0, |𝑐𝑜𝑠 𝜃𝑌| = − 𝑐𝑜𝑠 𝜃𝑌. 

Equation B23 is re-arranged to give a minimum permissible value for penetration depth h 

(equation B25). 

 

Thus, to have Δ >0, the penetration depth has a minimum value determined by a, b, θY. It is seen 

that h typically assumes values of the order of mm, much higher than the μm sized pillar height 

                                                          𝜏 =
4𝑎ℎ𝑐𝑜𝑠𝜃𝑌(1−𝑐𝑜𝑠 𝜃𝐶𝐵)(2+𝑐𝑜𝑠 𝜃𝐶𝐵)

(𝑎+𝑏)2 > 0 B21)  

                                                                          𝑐𝑜𝑠𝜃𝑌 > 0; 0° < 𝜃𝑌 < 90° B22)  

                                                      
4𝑎ℎ𝑐𝑜𝑠𝜃𝑌(1−𝑐𝑜𝑠 𝜃𝐶𝐵)(2+𝑐𝑜𝑠 𝜃𝐶𝐵)

(𝑎+𝑏)2 + 4 + 4 𝑐𝑜𝑠 𝜃𝐶𝐵 < 0 B23)  

                                                   
4𝑎ℎ|𝑐𝑜𝑠 𝜃𝑌|(1−𝑐𝑜𝑠 𝜃𝐶𝐵)(2+𝑐𝑜𝑠 𝜃𝐶𝐵)

(𝑎+𝑏)2 > 4 + 4 𝑐𝑜𝑠 𝜃𝐶𝐵                               B24)  

                                                          ℎ >
(𝑎+𝑏)2

𝑎

(1+𝑐𝑜𝑠 𝜃𝐶𝐵)

(1−𝑐𝑜𝑠 𝜃𝐶𝐵)(2+𝑐𝑜𝑠 𝜃𝐶𝐵)|𝑐𝑜𝑠 𝜃𝑌|  
B25)  
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c. This clearly shows that in general, it is not feasible to have a penetration with θY>90°. In the 

following section, the sufficient condition to have a mathematically deductible θM is described.  

Sufficient condition to have a θMdep with θY>90° 

Since the general equation of wettability has been simplified to a quadratic equation of cos θM 

(equation B19), feasible results can be obtained when -1< cos θMdep <1. The sufficient condition 

is analyzed for the case θY>90°. The simplified form of the general equation of wettability is 

expressed in the form of a quadratic equation (equation B26). 

Where 𝛽 = −𝜏 − 2 𝑐𝑜𝑠 𝜃𝐶𝐵 ;  𝜒 = −𝜏 + 𝑐𝑜𝑠2 𝜃𝐶𝐵  

 So, to have a valid θMdep, -1< cos θMdep <1 

The root corresponding to 𝑐𝑜𝑠 𝜃𝑀𝑑𝑒𝑝 =
−𝛽−√𝛽2−4𝜒

2
 is ignored as it renders values less than -1, 

the minimum possible value of cos θMdep. The other root, namely 𝑐𝑜𝑠 𝜃𝑀𝑑𝑒𝑝 =
−𝛽+√𝛽2−4𝜒

2
 is 

considered, and substituted to equation B1 (equation B27). 

On simplification, equation B27 gives rise to an inequality (equation B28). Now, both the 

inherent inequalities comprising equation B28 must be correct. 

To further analyze the result, the inequality must be squared. It should be noted that the 

inequality, on being squared, may not necessarily retain its sign. The modulus of each term must 

be squared and compared. To demonstrate this, a corollary is presented as follows. 

Corollary 

                                                          𝑐𝑜𝑠2 𝜃𝑀𝑑𝑒𝑝 + 𝛽 𝑐𝑜𝑠 𝜃𝑀𝑑𝑒𝑝 + 𝜒 = 0 B26)  

                                                                        −1 ≤ 𝑐𝑜𝑠 𝜃𝑀𝑑𝑒𝑝 =
−𝛽+√𝛽2−4𝜒

2
≤ 1  B27)  

                                                                             𝛽 − 2 ≤ √𝛽2 − 4𝜒 ≤ 𝛽 + 2 B28)  
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On squaring the inequality −4 < 2 < 5 without changing signs, a wrong result is obtained, i.e.  

16 < 4 < 25. The squared inequality is not correct, since 16 > 4. The domain of β plays a very 

crucial role in further analysis. 

For θY>90°, the inequality can be simply squared without changing signs.  

Inequality B32 is simplified to generate inequality B33.  

Substituting 𝛽 = −𝜏 − 2 𝑐𝑜𝑠 𝜃𝐶𝐵 ;  𝜒 = −𝜏 + 𝑐𝑜𝑠2 𝜃𝐶𝐵, inequality B33 is simplified in the 

following steps to render inequality B36. 

The above inequality suggests that 0 ≤ −(1 + 𝑐𝑜𝑠 𝜃𝐶𝐵)2, which is absurd. Hence, it can be 

inferred that no sufficient condition exists for a depinned state with θY>90°. Since neither the 

necessary condition, nor the sufficient condition render mathematically plausible surface 

characteristics, it is found that surface energy minimization cannot solely account for a depinned 

state for surfaces with θY>90°.  

 

                                                ∀𝜃𝑌 > 90°; ∵ 𝜏 < 0;  𝛽 > 0; ∴ |𝛽 + 2| > |𝛽 − 2| B29)  

                                                ∀𝜃𝑌 > 90°; ∵ 𝜏 < 0;  𝛽 > 0; ∴ |𝛽 + 2| > |𝛽 − 2| B30)  

                                                                       |𝛽 − 2| ≤ √𝛽2 − 4𝜒 ≤ |𝛽 + 2|  B31)  

                                                                      (𝛽 − 2)2 ≤ 𝛽2 − 4𝜒 ≤ (𝛽 + 2)2
 B32)  

                                                                                   −1 − 𝛽 ≤ 𝜒 ≤ 𝛽 − 1 B33)  

                                    −1 + 𝜏 + 2 𝑐𝑜𝑠 𝜃𝐶𝐵 ≤ −𝜏 + 𝑐𝑜𝑠2 𝜃𝐶𝐵 ≤ −𝜏 − 2 𝑐𝑜𝑠 𝜃𝐶𝐵 − 1 B34)  

−1 + 2𝜏 + 2 𝑐𝑜𝑠 𝜃𝐶𝐵 − 𝑐𝑜𝑠2 𝜃𝐶𝐵 ≤ 0 ≤ −2 𝑐𝑜𝑠 𝜃𝐶𝐵 − 1 − 𝑐𝑜𝑠2 𝜃𝐶𝐵  B35)  

2𝜏 − (1 − 𝑐𝑜𝑠 𝜃𝐶𝐵)2 ≤ 0 ≤ −(1 + 𝑐𝑜𝑠 𝜃𝐶𝐵)2
 B36)  



13 

 

Supporting information C: Proof of the existence of a intermediate wetting state 

The evolution of the apparent contact angle with increasing pillar spacing to pillar width ratios 

follows a unique trend for surfaces with θY > 90°{He, 2003 #127;Zhu, 2006 #1313;Zhang, 2007 

#1312;Barbieri, 2007 #1310;Varanasi, 2009 #893}. In the following figure, the APCA is plotted 

against spacing to width ratio for square pillar geometry with pillar width of 25 μm and Young’s 

contact angle (θY) of 114° {He, 2003 #127}. Cassie and Wenzel equations are also plotted for the 

same series of surfaces (Figure C1).  

       

  

There exists a unique spacing to width ratio, also known as critical spacing to width ratio 

(b/a=1.15) for a given surface chemistry for which the calculated Cassie and Wenzel contact 

angles are equal. For b/a ratios greater than the critical b/a ratio, the Wenzel state becomes 

energetically favorable to the Cassie state, and the static contact angle assumes values in between 

those predicted by Cassie and Wenzel models. Here, for b/a ratios between 1.15 and 3.0, the 

APCA is closer to the Cassie contact angle. Light transmission experiments revealed the 

existence of the liquid-air interface under the apex of the surface roughness for b/a ratios 

exceeding 1.15. {He, 2003 #127;Varanasi, 2009 #893}. For very high b/a ratios (> 3), the static 

contact angle measurements follow the Wenzel model. Erbil et al. have investigated the existing 

static contact angle measurements for a set of surfaces with square pillar topologies, distinct 
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chemistries, and increasing spacing to width ratios {Erbil, 2009 #1209;Zhang, 2007 #1312;Zhu, 

2006 #1313}. To understand the wetting states of the aforementioned set of data, the collected 

APCAs from the above experiments were listed. Assuming the wetting states were either Cassie 

(equation C1) or Wenzel, and with the knowledge of the YCA of the surfaces used (θY), the 

experimentally determined APCAs (θexp) were substituted into the Cassie equation (equation C 

2). The solid fraction fexp,Erbil, as obtained from the substitution was expressed in terms of θexp and 

θY (equation C3), and compared to the solid fraction as defined by the surface geometry (f).  

The change in solid fraction, measured as Δ fexp,Erbil (equation C4), is tabulated (table C1).  

A negative change, i.e. Δfexp,Erbil < 0 denotes penetration of water in the roughness valleys. It has 

been seen that for the 31 surfaces investigated, only 6 surfaces exhibit a negative change. For the 

remaining 25 cases, a positive change is recorded. This means that the liquid does not completely 

wet the apex of the roughness features, which is absurd. The error in the determination of solid 

fraction arises from overestimation of the contribution of the liquid-air fraction in equation 1 

{Milne, 2012 #1315}. We postulate that the area occupied by the liquid-air interface (liquid-air 

fraction) is independent of the degree of liquid penetration inside the roughness valleys (solid 

fraction). Equation C2 is corrected (equation C5), and the corrected solid fraction fexp,corrected, is 

determined (equation C6).  

The change in solid fraction (Δfexp,corrected) is calculated (equations C6 and C7) and listed for the 

set of 31 surfaces (table C1).  

                                                cos 𝜃𝐶𝐵 = 𝑓 cos 𝜃𝑌 + 𝑓 − 1  C1)   

                                      cos 𝜃𝑒𝑥𝑝 = 𝑓𝑒𝑥𝑝,𝐸𝑟𝑏𝑖𝑙 cos 𝜃𝑌 + 𝑓𝑒𝑥𝑝,𝐸𝑟𝑏𝑖𝑙 − 1  C2)          

                                                𝑓𝑒𝑥𝑝,𝐸𝑟𝑏𝑖𝑙 =
(1+cos 𝜃𝑒𝑥𝑝)

(1+𝑐𝑜𝑠 𝜃𝑌)
  C3)       

                                                ∆𝑓𝑒𝑥𝑝,𝐸𝑟𝑏𝑖𝑙 = 𝑓 − 𝑓𝑒𝑥𝑝,𝐸𝑟𝑏𝑖𝑙 =
(cos 𝜃𝐶𝐵−𝑐𝑜𝑠 𝜃𝑒𝑥𝑝)

(1+𝑐𝑜𝑠 𝜃𝑌)
  C4)          

                                                cos 𝜃𝑒𝑥𝑝 = 𝑓𝑒𝑥𝑝,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 cos 𝜃𝑌 + 𝑓 − 1  C5)          
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Only 6 of the 31 surfaces show a positive change in solid fraction (highlighted in grey). The 

remaining 25 surfaces exhibit a negative change in solid fraction, thereby indicating a 

penetration in the roughness valleys. Thus, it is safe to infer that the intermediate state exists for 

surfaces with θY  > 90°. 

Table C1 Evidence of an intermediate state: penetration observed for 25 of 28 surfaces. 

 Surface θY (°) F ΔfCB,Erbil ΔfCB,corrected 

{Zhang, 2007 #1312} 

1.  

107 

0.24 0.05 -0.12 

2.  0.29 0.07 -0.17 

3.  0.41 0.17 -0.41 

4.  0.45 0.22 -0.53 

5.  0.50 0.27 -0.65 

6.  0.59 0.33 -0.80 

7.  0.77 0.49 -1.18 

8.  0.97 0.04 -0.10 

9.  0.14 -0.06 0.15 

10.  0.29 0.09 -0.21 

11.  0.40 0.18 -0.43 

12.  0.45 0.20 -0.49 

13.  0.47 0.22 -0.53 

14.  0.60 0.34 -0.82 

15.  0.70 0.41 -0.99 

16.  0.94 0.12 -0.29 

17.  0.97 -0.03 0.07 

{Zhu, 2006 #1313} 

18.  

111 

0.21 0.03 -0.05 

19.  0.32 0.15 -0.27 

20.  0.38 0.15 -0.26 

21.  0.44 0.17 -0.30 

22.  0.47 0.25 -0.46 

23.  0.72 0.38 -0.68 

24.  0.39 0.14 -0.26 

25.  0.33 0.09 -0.16 

26.  0.29 0.05 -0.10 

27.  0.21 0.03 -0.05 

28.  0.14 -0.02 0.04 

 

                                                𝑓𝑒𝑥𝑝,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
(cos 𝜃𝑒𝑥𝑝+1−𝑓)

𝑐𝑜𝑠 𝜃𝑌
  C6)          

                                 ∆𝑓𝑒𝑥𝑝,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑓 − 𝑓𝑒𝑥𝑝,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
(𝑐𝑜𝑠 𝜃𝐶𝐵−𝑐𝑜𝑠 𝜃𝑒𝑥𝑝)

𝑐𝑜𝑠 𝜃𝑌
  C7)         
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Supporting information D: Determination of quasi-static limit for robustness 

The antiwetting pressure must be higher than 117.23 Pa for a quasi-statically robust surface. 

Equation 17 of the main text (shown here as equation D1) is solved, where all the parameters 

constituting the antiwetting pressure are converted to their respective SI units. The pillar width 

and spacing, originally expressed in μm are converted to m. The expression is simplified 

(equations D1- D6) to generate the quasi-static limit of spacing to width ratios. 

In order to have a quasi-static limit, the quasi-static spacing to width ratio must exceed its critical 

counterpart (equation D7). Expressions for both the limits are substituted, and the inequality is 

simplified to determine the domain of a, b and θY (equations D7- D14). A unique relationship is 

established between the height to width ratio and the surface chemistry (equation D15). 

 

                                   𝑃𝑎𝑛𝑡𝑖𝑤𝑒𝑡𝑡𝑖𝑛𝑔 = −
4 𝛾𝐿𝐴𝑎 𝑐𝑜𝑠 𝜃𝑌

𝑏(2𝑎+𝑏)
=

4 𝛾𝐿𝐴𝑎|𝑐𝑜𝑠 𝜃𝑌|

𝑏(2𝑎+𝑏)
        17. 

                                  
4×0.072×𝑎|𝑐𝑜𝑠 𝜃𝑌| 10−6

𝑏(2𝑎+𝑏) 10−12 > 117.23 𝑁𝑚−2 D1)  

                                            
𝑎|𝑐𝑜𝑠 𝜃𝑌|

𝑏(2𝑎+𝑏)
 106 > 407.06 𝑁𝑚−2   D2)  

                                            
|𝑐𝑜𝑠 𝜃𝑌|

𝑎

106

(1+
𝑏

𝑎
)2−1

> 407.06 𝑁𝑚−2   D3)  

                                               (1 +
𝑏

𝑎
)2 − 1 ≤

106|𝑐𝑜𝑠 𝜃𝑌|

407.06𝑎 
  D4)  

                                                    
𝑏

𝑎
≤ √1 +

2456.64|𝑐𝑜𝑠 𝜃𝑌|

𝑎 
− 1  D5)  

                                                 
𝑏

𝑎
≤ (

𝑏

𝑎
)𝑄𝑆 = √1 −

2456.64 𝑐𝑜𝑠 𝜃𝑌

𝑎 
− 1  D6)  

                                                          (
𝑏

𝑎
)𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ≤ (

𝑏

𝑎
)𝑄𝑆  D7)  

                                             √1 −
4𝑐 𝑐𝑜𝑠 𝜃𝑌

𝑎(1+𝑐𝑜𝑠 𝜃𝑌)
− 1 ≤ √1 −

2456.64 𝑐𝑜𝑠 𝜃𝑌

𝑎 
− 1  D8)  

                                         √1 +
4𝑐|𝑐𝑜𝑠 𝜃𝑌|

𝑎(1−|𝑐𝑜𝑠 𝜃𝑌|)
− 1 ≤ √1 +

2456.64|𝑐𝑜𝑠 𝜃𝑌|

𝑎 
− 1  D9)  
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4𝑐|𝑐𝑜𝑠 𝜃𝑌|

𝑎(1−|𝑐𝑜𝑠 𝜃𝑌|)
≤

2456.64|𝑐𝑜𝑠 𝜃𝑌|

𝑎 
 D10)  

                                                                        
𝑐

(1−|𝑐𝑜𝑠 𝜃𝑌|)
≤ 614.16  

D11)  

                                                                      1 − |𝑐𝑜𝑠 𝜃𝑌| ≥
𝑐

614.16
  D12)  

                                                                          1 + 𝑐𝑜𝑠 𝜃𝑌 ≥
𝑐

614.16
  D13)  

                                                                            𝑐𝑜𝑠 𝜃𝑌 ≥
𝑐

614.16
− 1  D14)  

                                                                        𝜃𝑌 ≤ cos−1(
𝑐

614.16
− 1)  D15)  


