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1 Diffusion of RNA polymerase

For the cases that transcription is suppressed, the local concentrations of RNA polymerase (RNAP) in the
solution of the brush region are derived by minimizing the free energy that has the form

Fbru

T
=
∫

dz[(ρ(z) logρ(z)−ρ(z))+vΦ(z)ρ(z)] . (1)

The first term is free energy contributions due to the translational entropy of RNAP and the second term is
free energy contributions due to the interactions between DNA chain segments and RNAP. We here treat
the case in which the concentrations of RNAP are relatively small in the solution of the brush region; the
interactions between RNAP molecules are very small and the structures of the DNA brush are only negli-
gibly modified by RNAP. The contributions of the interactions between RNAP and DNA chain segments
to the structures of DNA brushes are shown in sec. 4 in this Supplementary Material. Eq. (S1) should be
minimized with respect to the local concentrationsρ(z) of RNAP.Φ(z) is the local concentrations of DNA
chain segments.T is the absolute temperature in the unit of the Boltzmann constant.v is the second virial
coefficient that accounts for the interactions between RNAP and DNA chain segments.

The (local) chemical potentialsµ(z) (≡ δFbru/δρ(z)) of RNAP thus have the form

µ(z)
T

= logρ(z)+vΦ(z). (2)

The flux arising from the gradient of chemical potentials have the form

J =−Dρ(z)
∂
∂z

(
µ(z)

T

)
, (3)

whereD is the diffusion constant of RNAP in the solution of the brush region (eq. (S3) is derived by using
the Einstein relationship). Substituting eq. (S2) into eq. (S3) leads to the form

J =−D

[
∂
∂z

ρ(z)+vρ(z)
∂
∂z

Φ(z)

]
. (4)

The chemical potentials of RNAP in the solution above the brush region have the formµ0 = T logρ0
because the concentrations of RNAP in the solution is small and the interactions between RNAP molecules
are negligible. Because the chemical potentials of RNAP are continuous at the interface between the brush
region and the solution above the brush,µ(h) = µ0, the local concentrations of RNAP at this interface have
the form

ρ(h) = ρ0e−vΦ(h). (5)

This is one of the boundary conditions that is applied to the local concentrations of RNAP atz= h.
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2 Formal derivation of transcription dipoles

We treat DNA that has the promoter and terminator sites atsp-th andst-th chain segments (here and after,
the subscripts and superscripts “p” and “t” indicate the promoters and terminators, respectively). We use
a positional vectorrα(s) = (xα(s),yα(s),zα(s)) to treat the conformation of theα-th DNA in a brush
(α = 1,2, · · · ,n). Because the DNA brush is uniform in the lateral direction (thex-y plane), we treat only
thez-component of these positional vectors. The local concentrationsρ(z, t) of RNAP in the solution of the
brush region are determined by a rate equation that has the form

∂
∂ t

ρ(z, t) =−ĝp(z)k
p
onρ(z, t)+kp

offĝp(z)ĉp(z)+kt
offĝt(z)ĉt(z). (6)

ĝp(z) andĝt(z) are the local concentration of promoters and terminators atz and have the forms

ĝp(z) =
n

∑
α=1

δ (z−zα(sp)) (7)

ĝt(z) =
n

∑
α=1

δ (z−zα(st)), (8)

wheren is the number of DNA chains in the brush. ˆcp(z) and ĉt(z) are the fraction of promoters and
terminators, to which RNAP is bound (and are located atz), and have the forms

ĉp(z) =
1

ĝp(z)

n

∑
α=1

Cpαδ (z−zα(sp)) (9)

ĉt(z) =
1

ĝt(z)

n

∑
α=1

Ctαδ (z−zα(st)). (10)

Cpα(t) (= Cα(sp, t)) andCtα(t) (= Cα(st , t)) are the (average) number of RNAP at the promoter and the
terminator ofα-th DNA chain and satisfy rate equations that have the form

∂
∂ t

Cα(sp, t) = kp
onρ(zα(sp), t)−kp

offCα(sp, t)−ξCα(sp, t) (11)

∂
∂ t

Cα(s, t) = −ξCα(s, t)+ξCα(s−∆a, t) (12)

∂
∂ t

Cα(st , t) = −kt
offCα(st , t)+ξCα(st −∆a, t), (13)

where eqs. (S11), (S12), and (S13) are effective fors= sp, sp < s< st , ands= st , respectively.Cα(s, t)
is the number of RNAP at thes-th chain segment of theα-th DNA chain (at timet). ∆a is the distance
between the two neighbouring bases.

We solve eqs. (S6), (S11), (S12), and (S13) for stationary states. For the case in which RNAP is
released from the terminators slowly (kt

off is very small), RNAP molecules may be stacked in TX units.
In these cases, the excluded volume interactions between RNAP in a TX unit may limit the dynamics of
transcription. We here treat a simple case in which RNAP is released from terminators relatively fast and
the excluded volume interactions between RNAP molecules thus do not limit the dynamics of transcription.
In steady states, eqs. (S11), (S12), and (S13) lead to the relationships

kt
offCtα = λρ(zα(sp)) (14)

kp
onρ(zα(sp))−kp

offCpα = λρ(zα(sp)) (15)
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with

λ ≡ ξ
kp

off +ξ
kp

on. (16)

This leads to the form

−ĝp(z)k
p
onρ(z, t)+kp

offĝp(z)ĉp(z) = −
n

∑
α=1

(kp
onρ(z, t)−kp

offCpα)δ (z−zα(sp))

= −λ
n

∑
α=1

ρ(z)δ (z−zα(sp))

= −λ
n

∑
α=1

ρ(zα(sp))δ (z−zα(sp)) (17)

kt
offĝt(z)ĉt(z) = λ

n

∑
α=1

ρ(zα(sp))δ (z−zα(st)). (18)

For the case in which the lengthlTX of TX units (equivalently, the separation between the promoter
and terminator sites of TX units) is smaller than the Kuhn lengthla of DNA chains, the positions of the
promoters and terminators of TX units have an approximate relationship that has the form

zα(st) = zα(sp)+uzα lTX, (19)

whereuzα is thez-component of tangent vector of DNA chains at the positions of their TX units (we here
note that this tangent vector only depends on the indexα of DNA chains). Substituting eqs. (S17) and
(S18) into eq. (S6) leads to the form

∂
∂ t

ρ(z, t) = −λ
n

∑
α=1

ρ(zα(sp))δ (z−zα(sp))+λ
n

∑
α=1

ρ(zα(sp))δ (z−zα(st))

= −λ
n

∑
α=1

ρ(zα(sp)) [δ (z−zα(sp))−δ (z−zα(st))]

≃ − ∂
∂z

P̂z (20)

with

P̂z(z) = lTXλ
n

∑
α=1

uzαρ(zα(sp))δ (z−zα(sp)) (21)

where we used eq. (S19) to derive the last form of (S20).P̂z(z) is the density of TX dipoles and is rewritten
in the form

Pz(z) = lTXλS1(z)ρ(z)gp(z), (22)

whereS1(z) is the local average of thez-component of the tangent vector of DNA that has its TX unit at a
positionzand has the form

S1(z) =
1

gp(z)

n

∑
α=1

uzαδ (z−zα(sp)). (23)

1–13 | 3



3 Uniform brush

3.1 The orientational order parameter

We here treat a simple case in which the concentrations of DNA chain segments are uniform in the brush
region. This DNA brush is treated by using a free energy (per unit area) that has the form

F
σT

= N
∫

dΩn(u) logn(u)

+
1
2

NΦ0

∫
dΩi

∫
dΩ jβi j n(ui)n(u j). (24)

The first term is a free energy contribution due to the orientational entropy of DNA chain segments and
the second term is a free energy contribution due to the anisotropic excluded volume interactions between
DNA chain segments; this free energy takes into account the semiflexibility of DNA in an extension of the
free energy of flexible polymer brush (see also eq. (S28)).n(u) is the orientational distribution functions
of DNA chain segments andu = (sinθ cosφ ,sinθ sinφ ,cosθ) is the unit vector that is parallel to DNA
chain segments (θ is the angle between DNA chain segments and the normal of the substrate andφ is the
azimuthal angle). The integraldΩ (≡ sinθdθdφ) should be performed for all possible orientationsu of
DNA chain segments (the subscriptsi and j represent the integrals for two interacting chain segments).
This accounts for the chain segments in the bulk of the brush and thus is effective for the case in which the
numberN of chain segments per chain is relatively large. In this model, the substrate plays a role in breaking
the symmetry of the system; although eq. (24) is symmetric with respect to the outward and inward normal
to the substrate, we choose the solution, where DNA chains are stretched towards the outward normal to
the substrate.N is the number of chain segments of each DNA.Φ0 (≡ Nσ/h) is the concentrations of DNA
chain segments in the DNA brush, whereσ is the grafting density of DNA andh (= NlaS1) is the height of
the brush (la is the Kuhn length of DNA).S1 is the (first order) orientational order parameter that is defined
by

S1 =
∫

dΩcosθn(u). (25)

βi j (≡ 2dl2a|ui ×u j |) is the second virial coefficient.
The orientational distribution functionn(u) is expanded in a series of Legendre polynomials in the form

n(u) =
1

2π

∞

∑
k=1

2k+1
2

SkPk(cosθ), (26)

wherePk(cosθ) (k= 0, 1, 2,· · · ) is the Legendre polynomials of thek-th order and the coefficients

Sk =
∫

dΩPk(cosθ)n(u) (27)

are thek-th order orientational order parameter. For the cases that the orientational order parameterS1 is not
very close to unity and there are no higher order orientational order parameters, eq. (S24) has an asymptotic
form

Fnem

σT
≃ 3

2
h2

Nl2a
+

1
2

w
σN2

h
, (28)
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Fig. 1 The parameterα in eq. (S29) (a) and the first order orientational order parameterS1 (b) are calculated as functions of the (rescaled)
grafting densitywσ/la (solid). We used an asymptotic expression, eq.(S32) (for large grafting densities) to derive the broken curves.

where we used the second virial coefficientsw (= πdl2TX/2) for the cases that the orientational distributions
of DNA chain segments are approximately isotropic. Eq. (S24) thus takes into account the anisotropic
excluded volume interactions between DNA chain segments and the inextensibility of semiflexible polymers
in an extension of a free energy of flexible polymer brush.

We use a trial function that has the form

n(u) =
α
2π

e−αθ 2/2 (29)

to derive an approximate form of the orientational distribution functionn(u), whereα is a parameter that
characterizes the orientational distribution of chain segments (a similar trial function was used by On-
sager1,2). The Gaussian form of eq. (S29) implies that eq. (S29) is effective for a relatively large grafting
density (where the deviations of the orientations DNA chain segments from the normal of the substrate are
small). With this trial function, the first order orientational order parameterS1 has an approximate form

S1 ≃ 1− 1
α
, (30)

see eq. (S25). The free energy thus has an approximate form

Fnem

NσT
≃ logα −1+

3√
2π

wσ
la

√
α

α −1
. (31)

The parameterα is derived by minimizing the free energy, eq. (S31) with respect toα, see fig. S1. For
small (rescaled) grafting densities, the parameterα has an asymptotic form

α = 1+

√
3√
2π

√
wσ
la

+
1
2

3√
2π

wσ
la

, (32)

see the broken curves in fig. S1.
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3.2 The local concentrations of RNAP in the brush and transcription rate

We here treat the case in which each DNA has one TX unit at itss0-th chain segment. For the cases that the
concentrations of DNA chain segments are uniform in the brush region,Φ0 (= Nσ/h), the local density of
RNA polymerases in the form

ρ(z) = ρ0exp

(
−vΦ0−

λ lTXS1

D

∫ h

z
dz′gs0(z

′)

)
, (33)

where we used eq. (3) in the main article (and the boundary condition for the local concentrations of RNAP,
eq. (S5)). We here continue our calculation without specifying the form of the local concentrationsgs0(z)
of TX units (see also eq. (S36) below). Eq. (S33) predicts that the local concentrations of RNAP depend
on the positions0 of TX units along DNA. Substituting eq. (S33) into eq. (5) in the main article leads to
TX rates in the form

R =
D

lTXS1σ
ρ0e−vΦ0

∫ h

0
dz

∂
∂z

[
exp

(
−λ lTXS1

D

∫ h

z
dz′gs0(z

′)

)]
=

D
lTXS1

ρ0e−vΦ0

(
1−e−λ lTXS1σ/D

)
. (34)

The last form of eq. (S34) is eq. (6) in the main article. Indeed, this is a general result that does not depend
on the specific form of the local concentrationsgs0(z) of promoters; this results from only the fact that each
DNA has one promoter ∫ h

0
dzgs0(z) = σ . (35)

Our theory thus predicts that TX rates do not depend on the positions0 of the promoters for the cases that
the concentrations of DNA chain segments are uniform in the brush, see eq. (S34).

3.3 Fluctuations of the orientations of DNA chain segments: First approximation

We derive the form of the local concentrationsgs0(z) of the promoters by using the fact that the orientational
distributions of DNA chain segments of uniform DNA brushes do not depend on the distancez from the
substrate, see eq. (29). The central limit theorem predicts that the local (number) density of TX dipoles
have the form

gs0(z) = ⟨δ

(
z− la

s0

∑
k=1

cosθk

)
⟩

=
σα√
2πs0l2a

e−α2(z−s0laS1)
2/(2s0l2a). (36)

Eq. (S36) predicts that the distribution of TX units becomes broader with moving the positions of the TX
units from the grafted end to the free end of DNA. The central limit theorem is exact for large values ofs0
and thus eq. (36) is only an approximate form for small values ofs0 (however, we note that eq.(S36) returns
to the delta function fors0 → 0).
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The form of eq. (S36) is the distribution of thes0-th chain segment of DNA in the brush; the local
concentrations of chain segments is rederived by using eq. (S36) in the form

Φ(z) =
∫ N

0
ds

σα√
2πsl2a

e−α2(z−slaS1)
2/(2sl2a)

≃ σ
2laS1

[
1−Erf

(
α(z−NlaS1)√

2Nl2a

)]
, (37)

where we omitted a term

σ
2laS1

e2α2zS1/la

[
Erf

(
α(z+NlaS1)√

2Nl2a

)
−1

]
(38)

to derive the last form of eq. (S37). Eq. (S38) is small for the case in which the value ofαS1
√

N is large.
Eq. (S37) returns toΦ0 (= σ/(laS1)) for z< h; Φ0 is indeed an asymptotic concentration of DNA chain
segments in the bulk of the brush and these concentrations decrease to zero with the error function atz∼ h.
Eq. (S37) is thus the first approximation that takes into account the finite distribution of the orientations
of DNA chain segments. The fact that the local concentrations of DNA chain segments are smaller at the
interface (between the brush region and the bulk of the solution),z∼ h, than in the bulk of the brush implies
that the orientational order parameterS1 is smaller at the interface than in the bulk. This is not taken into
account our treatment that uses an orientational distribution function that does not depend on the distancez
from the substrate. Our treatment is thus only an approximation for the case in which TX units is located at
(the vicinity of) the free end of DNA.

4 Parabolic brush

For a moderate grafting density, the conformation of DNA in the brush does not greatly deviate the most
probable conformations3–5. We thus use the classical approximation in which the fluctuations of DNA
conformation from the most probable one are neglected3–5. Self-consistent field theories show that the local
concentrations of DNA chain segments are quadratic function of the distancez from the substrate (parabolic
brush)3–5. We here take into account the interactions between RNAP and DNA chain segments in an
extension of the self-consistent field theories of parabolic brushes. Because the treatment of parabolic brush
is well documented and our extension is straight forward, we do not repeat the derivation here (interested
readers should refer to refs.3 and5).

In self-consistent field theories, the interactions between DNA chain segments are treated by using
molecular fieldswΦ(z) (w is the second virial coefficient that accounts for the interactions between DNA
chain segments andΦ(z) is the local concentrations of DNA chain segments). We take into account the
interactions between RNAP and DNA chain segments in an extension of these molecular fields:

ω(z) = wΦ(z)+vρ(z), (39)

wherev is the second virial coefficient that accounts for the interactions between RNAP and DNA chain
segments andρ(z) is the local concentration of RNAP. The local concentrations of DNA chain segments
have the form

Φ(z) =
v
w
(ρ0−ρ(z))+

3
2

σN
hflx

z2
m−z2

h2
flx

, (40)
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whereσ is the grafting density of DNA andN is the number of chain segments of each DNA.ρ0 is the
concentration of RNAP in the bulk of the solution.hflx is defined by the form

hflx = Nla

(
4

π2

wσ
la

)1/3

(41)

zm is the height of the brush for the case in which there are RNAP molecules and is determined by a
relationship that has the form

z3
m

h3
flx

+
v

wσN

(
zmρ0−

∫ zm

0
dzρ(z)

)
= 1. (42)

The heightzm returns tohflx for the cases that there are no RNAP molecules in the system. The expressions
of eq. (S42) ensure that the number of chain segments in the brush is conserved,∫ zm

0
dzΦ(z) = σN. (43)

The local concentrations of the free ends of DNA chains have the form

g0(z) = 3σ
z
√

z2
m−z2

h3
flx

+
v

wN

∫ zm

z
dz′

z√
z′2−z2

(
∂

∂z′
ρ(z′)

)
. (44)

Eq. (S42) ensures that the number of DNA chains is conserved;∫ zm

0
dzg0(z) = σ . (45)

The most probable conformation of DNA that has free ends atz= z0 is represented by using positional
vectors that have the formr(s,z0) = (x(s,z0),y(s,z0),z(s,z0)), wherez(s,z0) has the form

z(s,z0) = z0sin
( πs

2N

)
. (46)

x(s,z0) andy(s,z0) are not important because the brush is uniform in the lateral direction (thex-y plane).
s is the index of chain segments that are count from the grafted ends (consistent with sec. 3). Indeed, the
optimal conformations are not affected by interactions between DNA chain segments and RNAP because
of the virtue of the classical approximation5. The tangent vectors of these conformations have the form
u(s,z0) (≡ (ux(s,z0),uy(s,z0),uz(s,z0))) with

uz(s,z0) =
π
2

z0

Nla
cos
( πs

2N

)
. (47)

The free energy of the brush (per unit area) has the form

Fbru

T
= F0+

3
2

v
∫ zm

0
dz′

Nσ
hflx

z2
m−z′2

h2
flx

ρ(z′)− 1
2

v2

w

∫ zm

0
dzρ2(z), (48)

whereF0 is free energy contributions

F0 =−3π2

8
σz2

m

Nl2a

(
2
5

z3
m

h3
flx

−1

)
+

1
2

v2

w
zmρ2

0 (49)
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that only indirectly depend on the total number of RNAP in the brush via eq. (S42). The third term of
eq. (S48) is effective interactions between RNAP molecules and is very small for the cases that the con-
centrations of RNAP are small. Omitting these higher order terms with respect to the local concentrations
ρ(z) of RNAP leads to the form of the second term of eq. (S1) for parabolic brush. With the free energy
contributions of the translational entropy of RNAP, see the first term of eq. (S1), eq. (S48) leads to the
osmotic pressures in the form

Πbru

T
= −ρ0 [logρ0−1]

+
π2

2
3σzm

2l2aN

[
z3
m

h3
flx

+
v

Nσw

(
ρ0zm−

∫ zm

0
dzρ(z)

)
−1

]
. (50)

Eq. (S42) ensures the equality of osmotic pressures at the interface between the brush region and the
solution.

We treat the cases that each DNA has one TX unit at itss0-th segment. Eq. (S46) shows that DNA that
has TX unit at a positionz have their free ends atz0 = χz, where we used a parameter

χ−1 = sin
(πs0

2N

)
(51)

to simplify the notation; because we only retain the most probable conformation for each free end positions
in our calculations, the positions of TX units (thes0-th chain segments) are uniquely determined by the
positions of free ends. The local (number) concentration of TX units has the form

gs0(z) = 3σ
χ2z
√

z2
m−χ2z2

h3
flx

+
v

wN

∫ zm

χz
dz′

χ2z√
z′2−χ2z2

(
∂

∂z′
ρ(z′)

)
(52)

for 0< z< χ−1zm andgs0(z) = 0 for χ−1zm < z< zm. The orientation of TX units of DNA is parallel (the
‘OUT’ configuration) or anti-parallel (the ‘IN’ configuration) to the tangent vector of the DNA, eq. (S47).
TX units that are located atz has the local projection along thez direction that has the form

uz(z) =
π
2

z
Nla

cot
(πs0

2N

)
. (53)

Because we only retain the most probable conformation of DNA for each free end positions in our calcula-
tions, all of TX units at the same positionz show the same orientation;S1(z) = uz(z).

5 Brushes of non-interacting hard-rods

We here analyze a DNA brush, where each DNA chain is treated as a hard-rod (in contrast to the approxi-
mation of flexible chain) and the concentration of these rods is relatively dilute and the interactions between
different rods are negligible. In this case, the orientations of the DNA rods are limited to the space that is
above the substrate (where the angleθ between a rod and the outward normal to the substrate is in the range
of 0< θ < π/2) and the distribution of the orientations is uniform. The orientational distribution function
n(u) thus has the form

n(u) =
1

2π
Θ(cosθ), (54)
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whereΘ(x) is 1 for x> 0 and 0 forx< 0. The local concentration of DNA chain “segments” has the form

Φ(z) = σ
∫ N

0
ds⟨δ (z−slacosθ)⟩

=
σ
la

⟨∫ Lcosθ

0
du

δ (u−z)
cosθ

⟩
=

σ
la

∫ cos−1(z/L)

0
dθ

sinθ
cosθ

= −σ
la

log
( z

L

)
, (55)

whereσ is the grafting density of DNA chains,L is the overall length of the rods,⟨⟩ is the thermodynamic
average with respect to the distribution functionn(u), andδ (x) is the Dirac delta function. The Kuhn
length la of DNA is twice the persistence length of DNA, where this length is determined by the absolute
temperatureT and the bending rigidity of the rods, and the effective numberN of chain segments is defined
by L/la that can be less than unity; this treatment makes our model of hard-rods compatible with the
formalism that is presented in the main article and other sections of this Supplementary Information. The
local density of promoter sites has the form

gs0(z) = ⟨δ (z−s0lacosθ)⟩

=
σ

las0
(56)

for z< las0 and zero forz> las0, for the cases in which each DNA chain has a TX unit at thes0-th chain
segment. The orientational order parameterS1(z) has the form

S1(z) =
1

gs0(z)
σ⟨cosθ δ (z−s0lacosθ)⟩

=
σ

gs0(z)

∫ π/2

0
dθ sinθ cosθ δ (z−s0lacosθ)

=
σ

gs0(z)
1

(s0la)2

∫ s0la

0
du uδ (z−u)

=
z

s0la
(57)

for z< s0la andS1(z) = 0 for z> s0la, see also eq. (S23).
Substituting eqs. (S55), (S56), and (S57) in eq. (3) in the main text leads to the expression of the local

concentration of RNAP in the form

ρ(z) = ρ0

(
z

laN

)µ
exp

[
−λσ lTX la

2D

(
1− z2

l2as2
0

)]
(58)

for z< Ns0 and

ρ(z) = ρ0

(
z

laN

)µ
(59)

10 | 1–13



s0/N

R
v
/ λ
ρ
0
l a

b.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4
R
v
/ λ
ρ
0
l a

a.

vσ/la

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 2 a. The (rescaled) TX rateRv/(λρ0la) is calculated as a function of the (rescaled) grafting densityvσ/la by using eq. (S60) that is
applicable to cases, in which each DNA behaves as hard-rods that are very dilutely packed so that interactions between these rods are
negligible. The positions of TX units are fixed ats0 = 0.5. The cases of both IN (blue) and OUT (red) orientations are shown.b. The
(rescaled) TX rateRv/(λρ0la) is calculated as functions of the positionss0/N of TX units along the DNA rod by using eq. (S60). The
rescaled grafting densitiesvσ/la that are used for the calculations are 0.3 (broken), 0.5 (solid), and 0.8 (dotted). The value of the (rescaled)
rate constantλ lTX la/(Dv) is fixed at 1.0 for all the calculations.

for Ns0 < z< Nla, whereµ is the rescaled grafting densityvσ/la. ρ0 is the concentration of RNAP in the
bulk of the solution andv is the second virial coefficient that accounts for DNA-RNAP interactions.D is
the diffusion constant of RNAP in the solution in the brush region.λ is the rate constant for the binding of
RNAP to a promoter site andlTX is the length of a TX unit. The TX rate of the DNA brush has the form

R
λσρ0

=
(s0

N

)µ ∫ 1

0
du uµ exp

[
λσ lTX la

2D
(u2−1)

]
, (60)

where this equation is derived by substituting eqs. (S58) and (S59) in eq. (5) in the main text. Eqs. (S58)
and (S60) are applicable to the OUT orientation and the corresponding equations for the IN orientation are
derived by the transformationλ →−λ . Eq. (S60) predicts that the TX rate scales with the positions0 of the
TX units asR∼ sµ

0 and is thus only weakly dependent on the position of the TX units,s0, for µ < 1, which
applies if the interactions between DNA chain segments and RNAP are small, see the broken curves in fig.
2 b; this weak dependence arises from the fact that the local concentration of DNA chain segments is only
logarithmically dependent on the positionz, see eq. (S55). This calculation also predicts that the TX rate
increasesas the TX units are shifted from the grafting ends to the free ends for both of the ‘IN’ and ‘OUT’
orientations; the latter is not the case of experiments of ref.9. In conclusion, brushes of non-interacting
hard-rods are relatively uniform, where the concentration varies only logarithmically with the positionz,
see eq. (S55). However, this does not account for the experimental results of ref.9 that show that for the
IN orientation, the TX ratedecreasesas the TX units are shifted from the grafting ends to the free ends. A
subtle balance between the flexibility and bending rigidity may be involved in the experiments that suggest
that the TX rate of the DNA brush (that has been measured in ref.9) is not sensitive to the positions of TX
units. The treatment here is applicable to cases, in which the overall length of hard rods is larger than the
size of RNAP; otherwise, one must use eq. (7) in the main article withS1 = 1/2.
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Fig. 3 a. The (rescaled) TX rateRw/(λρ0la) of a uniform DNA brush is shown as functions of the (rescaled) grafting densitywσ/la of DNA
for the cases that the values of the ratiov/w of virial coefficients are 1.5 (blue), 1.2 (yellow), 1.1 (orange), and 1.0 (pink) in the IN
configuration. The value of the (rescaled) rate constantλ lTX la/(Dw) is fixed to 1.0. b. The (rescaled) TX rateRw/(λρ0la) of a uniform DNA
brush is shown as functions of the (rescaled) grafting densitywσ/la of DNA for the cases that the values of the (rescaled) rate constant
λ lTX la/(Dw) are 1.0 (blue), 1.4 (light green), 1.45 (turquoise), and 1.5 (black) in the IN configuration. The value of the ratiov/w of the
second virial coefficients is fixed to 1.5.

Symbol Physical meaning Order of magnitudes
v 2nd virial coefficient for DNA-RNAP interactions 3×104 nm3

w 2nd virial coefficient for DNA-DNA interactions 3×104 nm3

la Kuhn length of DNA 100 nm
λ Binding rate constant of RNAP to the promoters 1×10−19 s−1m−3

D Diffusion coefficient of RNAP 3×10−11 m2/s
lTX Length of TX units 95 nm

Table 1The orders of magnitudes of parameters that are used in our theory are estimated for physiologically relevant salt concentration. We
estimated the second virial coefficientv for DNA-RNAP interactions by treating RNAP as a hard sphere of radius 10 nm, where its volume is
equal to the volume of RNAP of E-coli (an ellipsoid of 8.5 nm×10.5 nm×14 nm)6. With this treatment (and the viscosity of water
9×10−4 Pa s), the diffusion constantD of RNAP is estimated by using the Einstein’s relationship. In general, the (mutual) diffusion constant
is a function of the grafting density of DNA, but, for simplicity, we use the diffusion constant of the dilute limit. We used the values of the
binding rate constant of RNAP to the promoters of TX units that was shown in ref.7,8 and the values of the length of TX units that were used
in experiments9.
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