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1 Diffusion of RNA polymerase

For the cases that transcription is suppressed, the local concentrations of RNA polymerase (RNAP) in the
solution of the brush region are derived by minimizing the free energy that has the form

2 [ dzl(p(2)logp(z) - p(2) + v(2)p(2)]. 1)

The first term is free energy contributions due to the translational entropy of RNAP and the second term is
free energy contributions due to the interactions between DNA chain segments and RNAP. We here trealt
the case in which the concentrations of RNAP are relatively small in the solution of the brush region; the
interactions between RNAP molecules are very small and the structures of the DNA brush are only negli-
gibly modified by RNAP. The contributions of the interactions between RNAP and DNA chain segments
to the structures of DNA brushes are shown in sec. 4 in this Supplementary Material. Eq. (S1) should be
minimized with respect to the local concentratig@{g) of RNAP. ®(z) is the local concentrations of DNA
chain segmentsI is the absolute temperature in the unit of the Boltzmann constasthe second virial
coefficient that accounts for the interactions between RNAP and DNA chain segments.

The (local) chemical potentia}s(z) (= dFyr/0p(2)) of RNAP thus have the form

K2

T logp(z) +vd(z). 2
The flux arising from the gradient of chemical potentials have the form
J (u(2
1=-optag, (7). @)

whereD is the diffusion constant of RNAP in the solution of the brush region (eq. (S3) is derived by using
the Einstein relationship). Substituting eq. (S2) into eq. (S3) leads to the form

1=-D | 5P +vp(2) 5 002 @

The chemical potentials of RNAP in the solution above the brush region have theufoenr logpo
because the concentrations of RNAP in the solution is small and the interactions between RNAP molecules
are negligible. Because the chemical potentials of RNAP are continuous at the interface between the brust
region and the solution above the bruglih) = L, the local concentrations of RNAP at this interface have
the form

p(h) = poe M. (5)
This is one of the boundary conditions that is applied to the local concentrations of RNAPHat
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2 Formal derivation of transcription dipoles

We treat DNA that has the promoter and terminator sitess-#i ands-th chain segments (here and after,
the subscripts and superscripts’ ‘and “t” indicate the promoters and terminators, respectively). We use
a positional vector4(s) = (Xq(S),Ya(S),Z4(S)) to treat the conformation of tha-th DNA in a brush
(a=1,2,---,n). Because the DNA brush is uniform in the lateral direction {thyeplane), we treat only
the z-component of these positional vectors. The local concentratigns) of RNAP in the solution of the
brush region are determined by a rate equation that has the form

7] .
5tP(2 1) =~ 2)kGnp(2,t) + K Gp(2)Ep(2) + Koy (2) & (2)- (6)
dp(2) andd; () are the local concentration of promoters and terminatazsiat have the forms
n
(2 = 3 3(z—z(sp)) W
a=1
n
G(2 = Z 0(z—za(s)), (8)

wheren is the number of DNA chains in the brusit,(2) andc;(z) are the fraction of promoters and
terminators, to which RNAP is bound (and are locater) ,aand have the forms
1

ép(Z) = @p(Z) azlcpa(S(Z—Za(sp)) (9)

O(z2—2a(%))- (10)

Cpa(t) (=Ca(sp,t)) andCiqa(t) (= Ca(s,t)) are the (average) number of RNAP at the promoter and the
terminator ofa-th DNA chain and satisfy rate equations that have the form

%Ca(spa) = kBp(za(sp),t) —kgyCa (Sp,t) — &Ca(Sp,t) (11)
%Ca(st) —  —£Ca(st)+ECa(s—Aart) (12)
OCalst) = —KyyCals.t) +ECa(s ~har) (13)

where egs. (S11), (S12), and (S13) are effectivesfers,, sp < s < §, ands = s, respectively.Cq (s;t)
is the number of RNAP at theth chain segment of the-th DNA chain (at timet). Aa is the distance
between the two neighbouring bases.

We solve eqgs. (S6), (S11), (S12), and (S13) for stationary states. For the case in which RNAP is
released from the terminators slowl%[( is very small), RNAP molecules may be stacked in TX units.
In these cases, the excluded volume interactions between RNAP in a TX unit may limit the dynamics of
transcription. We here treat a simple case in which RNAP is released from terminators relatively fast and
the excluded volume interactions between RNAP molecules thus do not limit the dynamics of transcription.
In steady states, eqgs. (S11), (S12), and (S13) lead to the relationships

KyiCa = Ap(za(sp)) (14)
kB0 (Za(Sp)) —K5Cpa = AP(Za(Sp)) (15)
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with

A= %kﬁn. (16)
This leads to the form
G K02 — — 3 (B(2t) ~KyCor)S(z—2u(5p)
. aip(z)é(z—msp))
- aip(zasp))a(z—za(sp)) (17)
K626 = Ailp(za(sp))a(z—za(a)). (18)

For the case in which the lengthy of TX units (equivalently, the separation between the promoter
and terminator sites of TX units) is smaller than the Kuhn lendgtbf DNA chains, the positions of the
promoters and terminators of TX units have an approximate relationship that has the form

Zy () = Za(Sp) + UzalTx (19)

whereuzq is thez-component of tangent vector of DNA chains at the positions of their TX units (we here
note that this tangent vector only depends on the inde¢ DNA chains). Substituting egs. (S17) and
(S18) into eq. (S6) leads to the form

FPY = <A 3 plza(s)3(z—2u(se)+ 3 pla(s)B(z-2(5)
— A 3 P(aa(5) 6z 2e(5p) ~ B(z=2a(5)]
0 -
~ _(9_ZPZ (20)
with
B2 = IxA S Uad(za()5(2—2a(5)) @)
a=1

where we used eq. (S19) to derive the last form of (Séﬂ[)z) is the density of TX dipoles and is rewritten
in the form

P2(2) = ltxAS1(2)p(2)9p(2), (22)

whereS;(2) is the local average of trecomponent of the tangent vector of DNA that has its TX unit at a
positionz and has the form

i Uz 0(Z— Zo (Sp))- (23)
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3 Uniform brush

3.1 The orientational order parameter

We here treat a simple case in which the concentrations of DNA chain segments are uniform in the brush
region. This DNA brush is treated by using a free energy (per unit area) that has the form

F

5T = N/dQn(u)Iogn(u)

+%N‘Do/in/deBijn(Ui)n(uj)- (24)

The first term is a free energy contribution due to the orientational entropy of DNA chain segments and
the second term is a free energy contribution due to the anisotropic excluded volume interactions betweer
DNA chain segments; this free energy takes into account the semiflexibility of DNA in an extension of the
free energy of flexible polymer brush (see also eq. (S28))) is the orientational distribution functions

of DNA chain segments and = (sinf cosg,sinfsing,cosd) is the unit vector that is parallel to DNA

chain segment¥(is the angle between DNA chain segments and the normal of the substragesatite
azimuthal angle). The integrdQ (= sin8d0dg) should be performed for all possible orientatiansf

DNA chain segments (the subscriptand j represent the integrals for two interacting chain segments).
This accounts for the chain segments in the bulk of the brush and thus is effective for the case in which the
numbem of chain segments per chain is relatively large. In this model, the substrate plays a role in breaking
the symmetry of the system; although eq. (24) is symmetric with respect to the outward and inward normal
to the substrate, we choose the solution, where DNA chains are stretched towards the outward normal tc
the substrateN is the number of chain segments of each Dj.(= Na/h) is the concentrations of DNA

chain segments in the DNA brush, wherés the grafting density of DNA anld (= NI,S;) is the height of

the brush | is the Kuhn length of DNA)S; is the (first order) orientational order parameter that is defined

by
S = /dQcos@n(u). (25)

Bij (= 2d12|u; x uj|) is the second virial coefficient.
The orientational distribution functiam(u) is expanded in a series of Legendre polynomials in the form

) = o= > XA (coso), (26)

2m&

whereR(cosO) (k=0, 1, 2,---) is the Legendre polynomials of theth order and the coefficients

&= /dQ&(cos@)n(u) (27)

are thek-th order orientational order parameter. For the cases that the orientational order paBaimsetet

very close to unity and there are no higher order orientational order parameters, eq. (S24) has an asymptoti
form

1 oN?

~ o+ o 28
oT 2NI§+2W h ' (28)
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Fig. 1 The parametes in eq. (S29) (a) and the first order orientational order paranggtély) are calculated as functions of the (rescaled)
grafting densitywao /15 (solid). We used an asymptotic expression, eq.(S32) (for large grafting densities) to derive the broken curves.

where we used the second virial coefficienté= 12, /2) for the cases that the orientational distributions
of DNA chain segments are approximately isotropic. Eq. (S24) thus takes into account the anisotropic
excluded volume interactions between DNA chain segments and the inextensibility of semiflexible polymers
in an extension of a free energy of flexible polymer brush.

We use a trial function that has the form

_ O a6%)2
n(u) = 5€ (29)
to derive an approximate form of the orientational distribution functiam), wherea is a parameter that
characterizes the orientational distribution of chain segments (a similar trial function was used by On-
saget?). The Gaussian form of eq. (S29) implies that eq. (S29) is effective for a relatively large grafting
density (where the deviations of the orientations DNA chain segments from the normal of the substrate are
small). With this trial function, the first order orientational order paramgtdras an approximate form

1
~1—-—
S~1-—, (30)
see eq. (S25). The free energy thus has an approximate form
Fnem 3 wo a
~ | -1 — . 1
NoT 099 T T e T a—1 (31)

The parametea is derived by minimizing the free energy, eq. (S31) with respect,teee fig. S1. For
small (rescaled) grafting densities, the parametblias an asymptotic form

3 wo 1 3 wo
a=1+,—,/—+=z——, 32
\/ VeV la  2v/2m la (32)

see the broken curves in fig. S1.
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3.2 The local concentrations of RNAP in the brush and transcription rate

We here treat the case in which each DNA has one TX unit g§4tls chain segment. For the cases that the
concentrations of DNA chain segments are uniform in the brush regi@(= No /h), the local density of
RNA polymerases in the form

h
p(@ = poexp( ~voo— 12 [Nadge2)). (33)

where we used eq. (3) in the main article (and the boundary condition for the local concentrations of RNAP,
eq. (S5)). We here continue our calculation without specifying the form of the local concentigjcns

of TX units (see also eq. (S36) below). Eq. (S33) predicts that the local concentrations of RNAP depend
on the positiorsy of TX units along DNA. Substituting eq. (S33) into eq. (5) in the main article leads to
TX rates in the form

D [M,.0 MrxS ("
R = ITXSleOe /odzﬁ_z {exp(— 5 /Zdz’gso(z’))}

D v, Al Sla/D)
= e "o (l—e X . 34
s (34)
The last form of eq. (S34) is eq. (6) in the main article. Indeed, this is a general result that does not depend
on the specific form of the local concentratiarg(z) of promoters; this results from only the fact that each
DNA has one promoter

/0 "dz0,(2) — . (35)

Our theory thus predicts that TX rates do not depend on the posiiohthe promoters for the cases that
the concentrations of DNA chain segments are uniform in the brush, see eq. (S34).

3.3 Fluctuations of the orientations of DNA chain segments: First approximation

We derive the form of the local concentratiaig(z) of the promoters by using the fact that the orientational
distributions of DNA chain segments of uniform DNA brushes do not depend on the digtémore the
substrate, see eq. (29). The central limit theorem predicts that the local (number) density of TX dipoles
have the form

Ox(2) = (o (z— la % cos@k>>
K=1

_ Le—az(zfsdasl)z/(ﬁog). (36)
21101 2

Eq. (S36) predicts that the distribution of TX units becomes broader with moving the positions of the TX
units from the grafted end to the free end of DNA. The central limit theorem is exact for large vakes of
and thus eq. (36) is only an approximate form for small valuesg @fiowever, we note that eq.(S36) returns

to the delta function fosg — 0).
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The form of eq. (S36) is the distribution of tlsg-th chain segment of DNA in the brush; the local
concentrations of chain segments is rederived by using eq. (S36) in the form

(D(Z) _ e—az(z—slasl)z/(ZSE)

/Nd oa

0 4/2msk2
o a(z—NIzS)

2 ll_Erf (_ZN@ )] @)

O 20275 /I a(z+NlS) |
me2 3 [Erf(—\/m ) 1] (38)

to derive the last form of eq. (S37). Eq. (S38) is small for the case in which the vaus, ¢fN is large.

Eq. (S37) returns t@g (= 0/(1aS1)) for z < h; @g is indeed an asymptotic concentration of DNA chain
segments in the bulk of the brush and these concentrations decrease to zero with the error funstion at

Eq. (S37) is thus the first approximation that takes into account the finite distribution of the orientations
of DNA chain segments. The fact that the local concentrations of DNA chain segments are smaller at the
interface (between the brush region and the bulk of the solutzen}y, than in the bulk of the brush implies

that the orientational order parameggris smaller at the interface than in the bulk. This is not taken into
account our treatment that uses an orientational distribution function that does not depend on theadistance
from the substrate. Our treatment is thus only an approximation for the case in which TX units is located at
(the vicinity of) the free end of DNA.

12

where we omitted a term

4 Parabolic brush

For a moderate grafting density, the conformation of DNA in the brush does not greatly deviate the most
probable conformatioris®. We thus use the classical approximation in which the fluctuations of DNA
conformation from the most probable one are neglettedelf-consistent field theories show that the local
concentrations of DNA chain segments are quadratic function of the distémoee the substrate (parabolic
brush?°. We here take into account the interactions between RNAP and DNA chain segments in an
extension of the self-consistent field theories of parabolic brushes. Because the treatment of parabolic brus|
is well documented and our extension is straight forward, we do not repeat the derivation here (interested
readers should refer to refsand).

In self-consistent field theories, the interactions between DNA chain segments are treated by using
molecular fieldsv®(z) (w is the second virial coefficient that accounts for the interactions between DNA
chain segments an@i(z) is the local concentrations of DNA chain segments). We take into account the
interactions between RNAP and DNA chain segments in an extension of these molecular fields:

w(2) = wd(2) +vp(2), (39)

wherev is the second virial coefficient that accounts for the interactions between RNAP and DNA chain
segments ang(z) is the local concentration of RNAP. The local concentrations of DNA chain segments
have the form

30NZ -7

O = Glpo—p(@)+ 50

(40)
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whereo is the grafting density of DNA andll is the number of chain segments of each DMA.is the
concentration of RNAP in the bulk of the solutidm is defined by the form

4 wo 1/3
hﬂx - Nla (FE>

Zn is the height of the brush for the case in which there are RNAP molecules and is determined by a
relationship that has the form

v (Zmpo—/ozdeP(Z)) =1 (42)

W3
hﬂx wo N

(41)

The heightzy, returns tahgy for the cases that there are no RNAP molecules in the system. The expressions
of eq. (S42) ensure that the number of chain segments in the brush is conserved,

Zm
/ dzd(2) = oN. 43)
0
The local concentrations of the free ends of DNA chains have the form
-2 z2 7]
on(z) =302+ / d7 ( = p(z’)) (44)
Eg. (S42) ensures that the number of DNA chains is conserved;
Zm
/ dzg(z) = 0. (45)
0

The most probable conformation of DNA that has free ends-ay, is represented by using positional
vectors that have the fornis, zp) = (X(S,20),Y(S, %), Z(S, 20) ), Wherez(s, 7p) has the form

46

) (46)
X(s,209) andy(s,zp) are not important because the brush is uniform in the lateral directiorx{ghgane).

sis the index of chain segments that are count from the grafted ends (consistent with sec. 3). Indeed, the
optimal conformations are not affected by interactions between DNA chain segments and RNAP because
of the virtue of the classical approximatiinThe tangent vectors of these conformations have the form

U(s.2) (= (Ux(S, 20), Uy (S,20), Uz(S: 20))) with

2(s,9) = zosm< s

_D (T
The free energy of the brush (per unit area) has the form
Foru / No 22, — 12 12
U Rytov | dZee v / dzp 48
T & Prix hf2|X (48)

whereFy is free energy contributions

_ 3moz, (27 1v2
%__7?Nﬁ(§m ]>+§—%% (49)
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that only indirectly depend on the total number of RNAP in the brush via eq. (S42). The third term of
eq. (S48) is effective interactions between RNAP molecules and is very small for the cases that the con-
centrations of RNAP are small. Omitting these higher order terms with respect to the local concentrations
p(z) of RNAP leads to the form of the second term of eq. (S1) for parabolic brush. With the free energy
contributions of the translational entropy of RNAP, see the first term of eq. (S1), eq. (S48) leads to the
osmotic pressures in the form

M bru

T = —Pollogpo—1]
302 [ Z, Vv Zm
+7@ {@‘Fm (pOZm_/O de(Z)> _11 . (50)

Eq. (S42) ensures the equality of osmotic pressures at the interface between the brush region and th
solution.
We treat the cases that each DNA has one TX unit aith segment. Eq. (S46) shows that DNA that
has TX unit at a positioz have their free ends & = xz where we used a parameter
B T[SO)
=sin( =
X ( 2N
to simplify the notation; because we only retain the most probable conformation for each free end positions
in our calculations, the positions of TX units (tegth chain segments) are uniquely determined by the
positions of free ends. The local (humber) concentration of TX units has the form

2 2 _ y272 Zm 2
N s e e Ll (52)
Ix wN Xz /2,2 o X222 07

for 0 < z< x~'zyn andgs,(2) = 0 for x "1z, < z< zy. The orientation of TX units of DNA is parallel (the
‘OUT’ configuration) or anti-parallel (the ‘IN’ configuration) to the tangent vector of the DNA, eq. (S47).
TX units that are located athas the local projection along tzelirection that has the form

m 2z o
= Srcot( 52 ). 53
Because we only retain the most probable conformation of DNA for each free end positions in our calcula-

tions, all of TX units at the same positiarshow the same orientatio8;j(z) = u(2).

(51)

5 Brushes of non-interacting hard-rods

We here analyze a DNA brush, where each DNA chain is treated as a hard-rod (in contrast to the approxi-
mation of flexible chain) and the concentration of these rods is relatively dilute and the interactions between
different rods are negligible. In this case, the orientations of the DNA rods are limited to the space that is
above the substrate (where the angleetween a rod and the outward normal to the substrate is in the range
of 0 < 8 < r1/2) and the distribution of the orientations is uniform. The orientational distribution function
n(u) thus has the form

n(u) = %TG)(COSG), (54)
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where®(x) is 1 forx > 0 and 0 forx < 0. The local concentration of DNA chain “segments” has the form

N
d(z) = 0/0 ds(d(z—slacosf))

Lcosf _
_ o / du o(u—2)
la \Jo cosO

cos1(z/L) i
_ g/ desm@
laJo cosO
o z
- —Elog([), (55)

whereo is the grafting density of DNA chaing, is the overall length of the rods) is the thermodynamic
average with respect to the distribution functiofu), and 8(x) is the Dirac delta function. The Kuhn
lengthl, of DNA is twice the persistence length of DNA, where this length is determined by the absolute
temperaturd and the bending rigidity of the rods, and the effective nunbef chain segments is defined

by L/I4 that can be less than unity; this treatment makes our model of hard-rods compatible with the
formalism that is presented in the main article and other sections of this Supplementary Information. The
local density of promoter sites has the form

O0x(2) = (&(z—solacosB))
o
- 9 56
S (56)
for z < Iz and zero forz > |55, for the cases in which each DNA chain has a TX unit atgfith chain
segment. The orientational order param&g€r) has the form

Si(z) = gsol(z>a<cose 0(z— solac0s0))

o /”/Zde 6 cos6 &(z— splacoso)
= SN0 COS Z— SlaCOoS
9%(2) Jo ?

o 1 Sola

— REICA duud(z—u)
z

= o (57)

for z < spla andS;(z) = 0 for z > syl See also eq. (S23).

Substituting egs. (S55), (S56), and (S57) in eq. (3) in the main text leads to the expression of the local
concentration of RNAP in the form

p(2) = po (laiN) " exp{—%gxla (1— éﬂ (58)

P(2) = po (laiN)“ (59)

forz< Ng and
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Fig. 2 a The (rescaled) TX ratBv/(A pola) is calculated as a function of the (rescaled) grafting densitita by using eq. (S60) that is
applicable to cases, in which each DNA behaves as hard-rods that are very dilutely packed so that interactions between these rods are
negligible. The positions of TX units are fixedsgt= 0.5. The cases of both IN (blue) and OUT (red) orientations are shbwhhe

(rescaled) TX rat&®v/(A pola) is calculated as functions of the positiaggN of TX units along the DNA rod by using eq. (S60). The
rescaled grafting densitie® /|5 that are used for the calculations ar8 (broken), 05 (solid), and (B (dotted). The value of the (rescaled)
rate constand Itxla/(Dv) is fixed at 10 for all the calculations.

for Ng < z < Nly, wherep is the rescaled grafting densiw /1,. po is the concentration of RNAP in the
bulk of the solution and is the second virial coefficient that accounts for DNA-RNAP interactidhss
the diffusion constant of RNAP in the solution in the brush regibis the rate constant for the binding of
RNAP to a promoter site argly is the length of a TX unit. The TX rate of the DNA brush has the form

/dud‘ [)‘G'TX'a(u —1)], (60)

where this equation is derived by substituting egs. (S58) and (S59) in eq. (5) in the main text. Egs. (S58)
and (S60) are applicable to the OUT orientation and the corresponding equations for the IN orientation are
derived by the transformation— —A. Eq. (S60) predicts that the TX rate scales with the pos#jaf the

TX units asR ~ sg and is thus only weakly dependent on the position of the TX usjis$or u < 1, which

applies if the interactions between DNA chain segments and RNAP are small, see the broken curves in fig.
2 b; this weak dependence arises from the fact that the local concentration of DNA chain segments is only
logarithmically dependent on the positiansee eq. (S55). This calculation also predicts that the TX rate
increasesas the TX units are shifted from the grafting ends to the free ends for both of the ‘IN’ and ‘OUT’
orientations; the latter is not the case of experiments of.rdfh conclusion, brushes of non-interacting
hard-rods are relatively uniform, where the concentration varies only logarithmically with the pasition

see eq. (S55). However, this does not account for the experimental results dtiaf.show that for the

IN orientation, the TX ratelecreasess the TX units are shifted from the grafting ends to the free ends. A
subtle balance between the flexibility and bending rigidity may be involved in the experiments that suggest
that the TX rate of the DNA brush (that has been measured i) iefnot sensitive to the positions of TX

units. The treatment here is applicable to cases, in which the overall length of hard rods is larger than the
size of RNAP; otherwise, one must use eq. (7) in the main article Syith 1/2.

)\UPO
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Fig. 3 a The (rescaled) TX ratBw/(A pola) of a uniform DNA brush is shown as functions of the (rescaled) grafting dewsifif, of DNA
for the cases that the values of the ratjov of virial coefficients are B (blue), 12 (yellow), 11 (orange), and.D (pink) in the IN
configuration. The value of the (rescaled) rate constépitla/(Dw) is fixed to 10. b. The (rescaled) TX ratBw/ (A pola) of a uniform DNA
brush is shown as functions of the (rescaled) grafting demsityl; of DNA for the cases that the values of the (rescaled) rate constant
Alrxla/(Dw) are 10 (blue), 14 (light green), 145 (turquoise), and.B (black) in the IN configuration. The value of the ratiow of the

second virial coefficients is fixed to4.

Symbol Physical meaning Order of magnitudeq
v 2nd virial coefficient for DNA-RNAP interaction$ 3x 10% nmP
w 2nd virial coefficient for DNA-DNA interactions 3x 10° nm?®

la Kuhn length of DNA 100 nm

A Binding rate constant of RNAP to the promotefs 1x 10-+°s ‘m—>
D Diffusion coefficient of RNAP 3x10H1m?/s
Ix Length of TX units 95 nm

Table 1 The orders of magnitudes of parameters that are used in our theory are estimated for physiologically relevant salt concentration. We
estimated the second virial coefficiantor DNA-RNAP interactions by treating RNAP as a hard sphere of radius 10 nm, where its volume is
equal to the volume of RNAP of E-coli (an ellipsoid a6 mx 10.5 nmx 14 nm)®. With this treatment (and the viscosity of water

9x 10~4 Pa s), the diffusion constaBxof RNAP is estimated by using the Einstein’s relationship. In general, the (mutual) diffusion constant

is a function of the grafting density of DNA, but, for simplicity, we use the diffusion constant of the dilute limit. We used the values of the
binding rate constant of RNAP to the promoters of TX units that was shown ihfrafd the values of the length of TX units that were used

in experiments.
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