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1. MATHEMATICAL FORMULATION AND COMPUTATIONAL ALGORITHM

A. Fluid and Membrane Dynamics

We consider a three-dimensional capsule (i.e. a fluid volume enclosed by a thin elastic

membrane) with a spherical undisturbed shape. The capsule is flowing along the centerline

of a straight micro-channel with a converging section in the middle connecting two square

channels, as shown in figure 1. We emphasize that the centerline requirement is not a

restriction for our study since this is the steady-state location of spherical capsules in a

square channel [5]; thus our capsules are expected to have been aligned with the micro-

capillary centerline during their motion in the area further upstream the constriction.

To facilitate our description, we imagine that the channel is horizontal as illustrated

in figure 1(a). Thus, the flow direction (i.e. the x-axis) corresponds to the channel’s or

capsule’s length, the z-direction will be referred as height while the y-direction will be

referred as width. The height of the square micro-channel at the left is 3ℓz and that of the

square micro-channel at the right 2ℓz. The converging middle section, which connects the

two square micro-channels, has length ℓcon = ℓz. Each of the two square micro-channels has

length 12ℓz, and thus the length of the entire microfluidic device is 25ℓz. The half-height ℓz

of the downstream square micro-channel serves as the length scale for the present problem

while the origin of the co-ordinate system is placed at the beginning of this channel (just

after the converging middle section) as shown in figure 1(a).
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FIG. 1. (a) Illustration of an elastic capsule flowing at the centerline of a converging square

micro-channel. (b) Spectral boundary element discretization of the microfluidic geometry.

2



The shape of the converging middle section in our micro-geometry is defined by a “quarter-

cosine” variation, which for the co-ordinate system shown in figure 1(a) is given by
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where −1 ≤ x/ℓz ≤ 0 and f(x) defines the geometry’s height z(x) or width y(x). It is of

interest to mention that, although the results presented in this paper were derived utilizing

this shape of the converging middle section, we derived very similar (or practically identical)

results utilizing other converging shapes, including “half-cosine” variation
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and “straight-line” connection
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The capsule’s interior and exterior are Newtonian fluids, with viscosities λµ and µ, and

the same density. The capsule size a is specified by its volume V = 4πa3/3 and is comparable

to the micro-geometry’s half-height ℓz. In addition, we consider that the capsule is slightly

over-inflated, made of a strain-hardening membrane following the Skalak et al. constitutive

law [10] (and thus called Skalak capsule in this paper) with comparable shearing and area-

dilatation resistance. This capsule description represents well bioartificial capsules such as

the capsules made of covalently linked human serum albumin (HSA) and alginate used in

the experimental study of Risso, Collé-Pailot and Zagzoule [9].

At time t = 0 the capsule is located at −5ℓz on the micro-channel centerline, the flow

is turn on inside the microfluidic device and we investigate the transient dynamics of the

capsule as it enters and exits the constriction which occupies the x-region [−ℓz , 0]. (The

specific choice for the capsule’s initial position does not affect the capsule deformation and

motion inside the constriction or downstream of it, i.e. we obtained identical results even

for capsules placed further upstream the constriction.)

At the micro-capillary ends the flow approaches the undisturbed flow u∞ = (u∞

x , 0, 0)

in a square channel which serves as the boundary condition assuming a fixed flow rate Q

inside the micro-device. For the downstream square micro-channel with half-height ℓz and

half-width ℓy = ℓz, this velocity is given by
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while p is the dynamic pressure [5]. By integrating over the channel’s cross-section, we can

easily show that the volumetric flow rate Q is given by
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The average velocity is U = Q/(ℓyℓz) while the maximum undisturbed velocity at the cen-

terline of the square channel is Umax/U ≈ 2.096. In our computations, we truncated the

infinite (convergent) series associated with the channel’s undisturbed flow when m = 40.

We note that for the upstream square micro-channel the half-height is 1.5ℓz and the average

velocity is 4/9U .

Assuming low-Reynolds-number flows, the governing equations in fluid 2 are the Stokes

equations and continuity,

∇ · σ ≡ −∇p + µ∇2u = 0 and ∇ · u = 0 (7)

where σ is the stress tensor and u the fluid velocity. Inside the capsule, the same equations

apply with the viscosity replaced by λµ. It is of interest to note that in small length-scale

systems, such as microfluidic channels, low-Reynolds-number flows are easily achievable

[5, 11]. (For example, in a microfluidic channel with size ℓy = 100 µm, the Reynolds number

remains Re = O(10−3) even for velocities up to U = 10 mm/s when we consider the density

and viscosity of water.)

For the current problem, the system surface SB consists of the capsule interface Sc, the

micro-device’s solid surface Ss, and the fluid surface Sf of the inlet and outlet of the micro-

device. At the capsule’s interface, the velocity is continuous and we define the surface stress

vector (or hydrostatic traction) ∆f from the stress tensor σ and the surface unit normal n,

i.e.

u1 = u2 = u and ∆f ≡ n · (σ2 − σ1) (8)

Here the subscripts designate quantities evaluated in fluids 1 and 2, respectively, while n is

the unit normal which we choose to point into fluid 2. The boundary conditions on the rest

surfaces are

u = 0 on the solid boundary Ss (9)
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u = u∞ on the fluid boundary Sf (10)

Based on standard boundary integral formulation, the velocity at a point x0 on the system

surface SB may be expressed as a surface integral of the force vector f = n · σ and the

velocity u over all points x on the boundary SB,

Ω u(x0) =−

∫

Sc

[S · ∆f − µ(1 − λ) T · u · n] (x) dS

−

∫

Ss∪Sf

(S · f − µ T · u · n) (x) dS (11)

where the coefficient Ω takes values 4πµ(1+λ) and 4πµ for points x0 on the surfaces Sc and

Ss ∪ Sf respectively. The tensors S and T are the fundamental solutions for the velocity

and stress for the three-dimensional Stokes equations, i.e. known functions of the system

surface SB [1, 2, 14]

Owing to the no-slip condition at the interface, the time evolution of the material points

of the membrane may be determined via the kinematic condition at the interface

∂x

∂t
= u (12)

To produce a closed system of equations, the surface stress ∆f on the capsule interface

is determined by the membrane dynamics. Our membrane description is based on the well-

established continuum approach and the theory of thin shells by considering the membrane

as a two-dimensional continuum with shearing and area-dilatation resistance but negligible

bending resistance. This modeling has been proven to be an excellent description of a wide

range of thin elastic membranes (such as biocompatible alginate, synthetic polysiloxane and

aminomethacrylate capsules) whose thickness is several orders of magnitude smaller than

the size of the capsules (up to a membrane thickness of 5% the capsule size), and their

bending resistance is very small compared to their shearing resistance [3, 4, 8].

The surface stress is determined by the in-plane stresses

∆f = −∇s · τ = −(ταβ |α tβ + bαβ ταβ n) (13)

where the Greek indices range over 1 and 2, while Einstein notation is employed for (every

two) repeated indices. In this equation, the ταβ |α notation denotes covariant differentia-

tion, tβ = ∂x/∂θβ are the tangent vectors on the capsule surface described with arbitrary

curvilinear coordinates θβ , and bαβ is the surface curvature tensor [4, 8]. The in-plane stress
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tensor τ is described by the strain-hardening constitutive law of Skalak et al. [10] which

relates τ ’s eigenvalues (or principal elastic tensions τP
β , β = 1, 2) with the principal stretch

ratios λβ by

τP
1 =

Gsλ1

λ2

{λ2

1 − 1 + Cλ2

2[(λ1λ2)
2 − 1]} (14)

Note that the reference shape of the elastic tensions is the spherical quiescent shape of the

capsule while to calculate τP
2 reverse the λβ subscripts. In Eq.(14), Gs is the membrane’s

shear modulus while the dimensionless parameter C describes the membrane hardness (i.e.

the strength of its strain-hardening nature) and is associated with the scaled area-dilatation

modulus Ga of the membrane, Ga/Gs = 1 + 2C [8, 10].

We further consider that the capsule is subjected to a positive osmotic pressure difference

between the interior and exterior fluids, i.e. the capsule is (slightly) over-inflated and thus

prestressed. Such consideration is motivated by the fact that, owing to osmotic effects

during their fabrication, artificial capsules are often slightly over-inflated as the bioartificial

capsules used in the experimental investigation of Risso, Collé-Pailot and Zagzoule [9].

To quantify the capsule over-inflation, we define the prestress parameter αp such that all

lengths in the undeformed capsule would be scaled by (1 + αp) relatively to the reference

shape [5–7]. Since the capsule is initially spherical, its membrane is initially prestressed by an

isotropic elastic tension τ0 = τP
β (t = 0) which depends on the employed constitutive law and

its parameters but not on the capsule size. For example, for a Skalak capsule with C = 1

and αp = 0.05, the undisturbed capsule radius a is 5% higher than that of the reference

shape and the initial membrane tension owing to prestress is τ0/Gs ≈ 0.3401. removes the

buckling instability observed in axisymmetric-like flows. (See section 2 in Ref.[5].)

B. Definition of Geometric and Physical Variables

To describe the capsule deformation, we determine the capsule projection lengths along

the three axes, Lx, Ly and Lz, as the maximum distance in the x, y and z coordinates of

the capsule surface. For a given capsule shape, we determine accurately these three capsule

dimensions by employing a Newton method to solve the optimization problems using the

spectral discretization points on the membrane. Our results are expressed as functions of

the capsule’s centroid xc = (xc, yc, zc) where yc = zc = 0 for this problem owing to the

centerline motion.

6



In this study, we assume that the flow rate Q inside the channel is fixed. Thus we apply

velocity boundary conditions at the channel’s inlet and outlet (see Eq.(8)) and we solve for

the fluid force at the channel ends. The fluid pressure at the channel’s inlet and outlet, Pin

and Pout, is determined as the surface-average of the normal force on these two surfaces

Pin =

∫

in
fx dS

∫

in
dS

and Pout = −

∫

out
fx dS

∫

out
dS

(15)

(Note that although we have chosen this way to determine the pressure at the channel ends,

our computational results show that the fluid normal force, or pressure, at each channel

end is constant to at least 4 significant digits among the spectral discretization points.)

The pressure difference at the channel ends is ∆P = Pin − Pout and we also calculate the

additional pressure difference owing to the presence of the capsule in the channel,

∆P+ = ∆P − ∆P nc (16)

where ∆P nc is the pressure difference at the channel ends when no capsule is present in the

channel. As the capsule moves in the channel, its volume-average velocity is determined

from surface properties, i.e.

U =
1

V

∫

V

u dV =
1

V

∫

Sc

(n · u) x dS (17)

In our work, we consider Skalak capsules with different size a/ℓz, membrane hardness C

and prestress αp. The present problem depends on two additional dimensionless parameters,

the fluids viscosity ratio λ and the capillary number Ca defined as

Ca =
µU

Gs

(18)

where U is the average undisturbed velocity at the downstream square micro-channel. It

is of interest to note that the capillary number, as defined by Eq.(18), does not contain

any length scale, and thus it may be considered as a dimensionless flow rate. In our study,

the velocity is scaled with the average undisturbed velocity U and the pressure with the

associated pressure scale, Π = µU/(2ℓz), in the downstream square channel.

C. Membrane Spectral Boundary Element Algorithm

The numerical solution of the boundary integral equation, (11), is achieved through our

spectral boundary element method for membranes [4, 5]. Briefly, each boundary is divided
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into a moderate number NE of surface elements which are parameterized by two variables

ξ and η on the square interval [−1, 1]2. The geometry and physical variables are discretized

using Lagrangian interpolation in terms of these parametric variables. The NB basis points

(ξi, ηi) for the interpolation are chosen as the zeros of orthogonal polynomials of Gauss-type.

This is equivalent to an orthogonal polynomial expansion and yields the spectral convergence

associated with such expansions.

The boundary integral equation (11) admits two different types of points. The collocation

points x0 where the equation is required to hold and the basis points x where the physical

variables u and f are specified or determined. Our spectral boundary element method

employs collocation points x0 of Legendre–Gauss quadrature, i.e. in the interior of the

elements. As a result the boundary integral equation holds even for singular elements,

i.e. the elements which contain the corners of the channel geometry. (Similar approach

has been utilized in our earlier papers for droplets attached to solid surfaces, and vascular

endothelial cells or leukocytes adhering to the surface of blood vessels, e.g. [1, 12, 13].) In

addition, we use basis points x of Legendre–Gauss–Lobatto quadrature and thus the physical

variables are determined in the interior and on the edges of the spectral elements. For the

time integration, we employed the 2nd-order Runge-Kutta scheme with a typical time step

∆t = 0.5 × 10−3. Further details on our spectral boundary element algorithms are given in

our earlier publications, i.e. [2, 4, 5, 14].

Three-dimensional views of the problem geometry are shown in figure 1(b). In the present

paper, the majority of computations were performed with a discretization employing NE =

44 elements. The capsule surface is divided into 6 elements, while we define 9 rows of 4

elements each on the micro-device’s solid surface and 1 spectral element for the inlet and

outlet of the device, as seen in figure 1(b).

In our work we utilized NB = 14–16 basis points; in the paper we present our results

for NB = 14 and use those with denser grids as convergence runs. In particular, to verify

the accuracy of our results, we performed convergence runs covering the entire interfacial

evolution for several capsules and flow rates. Our convergence runs showed that our results

for the interfacial shape, the capsule velocity and the additional pressure difference presented

in this work were determined with an accuracy of at least 3 significant digits.

The problem studied in this paper admits three independent symmetry planes, y = 0,

z = 0 and y = z. Exploiting these symmetries reduces the memory requirements for the
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storage of the system matrices by a factor of 82, the computational time for calculating

the system matrices by a factor of 8 and the solution time of the linear systems via direct

solvers by a factor of 83. Most of our computations were performed on multi-core computers

utilizing the existing parallelization of our spectral boundary element algorithm via OpenMP

directives for the calculation of the system matrices, and highly optimized, parallelized

routines from the LAPACK library for the solution of the dense system matrices.
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