Core-sheath Structured Bacterial Cellulose/Polypyrrole Nanocomposites with Excellent Conductivity as Supercapacitors

Huanhuan Wang, Linyi Bian, Peipei Zhou, Jian Tang and Weihua Tang*

Supplementary Information

Preparation of BC/PPy conductive nanocomposites. The BC/PPy conducting nanocomposites were prepared via in-situ oxidative polymerization of Py self-assembled onto BC nanofibers. By fine-tuning the reaction parameters including the feeding mass ratio of Py/BC (1:1 to 1/20), molar ratio of oxidizer FeCl₃/Py (0.25:1 to 1.25:1), molar ratio of dopant HCl/Py (0:1 to 1.4:1), composition of mixture solvent of DMF/H₂O (0:1 to 1.5:1), reaction temperature (0°C to 25°C), and reaction time (1 min to 24 h) in sequence, a large spectrum of BC/PPy nanocomposites were prepared. With the as-prepared nanocomposites at hand, the electrical conductivity was measured with a conventional four-point probe technique and morphology was observed via field-emission gun scanning electron microscopy (FESEM).

Characterization. FT-IR spectra were obtained using a Bomen MB154S Fourier transform infrared (FTIR) spectroscopy. The sample was cut into very little particles and characterized by a Fourier transform infrared spectrometer for the evaluation of chemical structures in the range of 4000 to 500 cm⁻¹ by accumulating 64 scans at a resolution of 2 cm⁻¹.

Polymer surface composition was determined using X-ray photoelectron spectroscopy (XPS) (PHI-5300, Perkin Elmer) with a Mg-K α excitation source (1253.6 eV) at high- resolutions wide scans (71.55eV analyzer pass energy). The

core-level signals were obtained at a photoelectron take off-angle (α) of 45° with respect to the samples surface. After linear background subtraction, Nls and O1s spectra were fitted with Gaussian component peaks allowing slight variations in the full-width at half maximum (fwhm) to reflect their chemical-state dependence.¹ Binding energies (BE) were referenced to the maxima in the smoothed Cls envelopes, defined at 285.0 eV,² to compensate for surface-charging, Surface atomic stoichiometries were obtained from peak areas corrected with experimental sensitivity factors and are expected to have a ±10% error.

X-ray diffraction (XRD) patterns were recorded on an X-ray diffractometer (D8 Advance, Bruker, Germany) by using Cu K α radiation at 40kV and 30mA. The diffraction angle was ranged from 10 to 45°. The crystallinity index was calculated as the ratio of the area of the resolved crystalline peaks to the total area of a diffraction profile for 10 to 45°. The crystallite size was estimated from the integrated width of the resolved crystalline peak by using Scherrer's equation.

The thermal stability of BC and BC/PPy nanocomposites was carried out with a Mettler Toledo SDTA815^e thermogravimetric analyser. All analyses were performed with 1.9 mg samples in aluminum pans and were heated from 50 and 800°C at a scanning rate of 20 K/min in the presence of a 30 ml/min nitrogen flow.

For field-emission gun scanning electron microscopy (FESEM) observations, samples of BC and PPy/BC nanocomposites were sputtered with gold. The morphology of BC and PPy/BC nanocomposites was observed with a Hitachi S4800 FESEM at an accelerating voltage of 15 kV. For fracture surface observations the composites were immersed in liquid nitrogen and subsequently fractured.

XPS spectra analysis. The binding energy (BE) for Curve-resolved C1s and O1s core levels of BC and C1s, O1s, N1s and Cl2p core levels of pristine PPy and BC/PPy composites were summarized in Table S1.

Table S1. Curve-resolved C1s and O1s core levels of BC and C1s, O1s, N1s and Cl2p core levels of BC/PPy composites²⁻⁴

BE(eV)	C1s			01	S	N1s			Cl2p		
Samples	C-H	C-OH	C=O, C-N O-C-O	C-OH	C-OC	-N=	-NH-	-N ⁺ -	Cl	Cl^*	-Cl

BC	281.0 283.2	285.0	286.2	528.6	531.3						
PPy						397.8	399.3	401.1			
*BC/PPy	284.1 285.4	287.0	288.4	531.4	533.5	398.7	399.9	401.2	197.1	198.5	199.8

*BC/PPy refers to the BC/PPy composites prepared under the optimized reaction conditions.

Proposed mechanism for PPy coating onto BC nanofibers. According to the morphology evolution during fine-tuning reaction parameters for PPy coating, the synthesis mechanism of BC/PPy nanocomposites was speculated and shown in Figure S1. It can be clearly seen that three processes were: (a) pyrrole monomer be dispersed into the 3D-network of BC nanofibers in the medium of DMF/H₂O (DMF played an important role in dispersing process, which could be proven by the surface area and FESEM images of materials); (b) the polymerization coincided with the doping process by oxidant of FeCl₃ and dopant of HCl; (c) PPy/BC nanocomposites were formed after filtration and lyophilizetion.

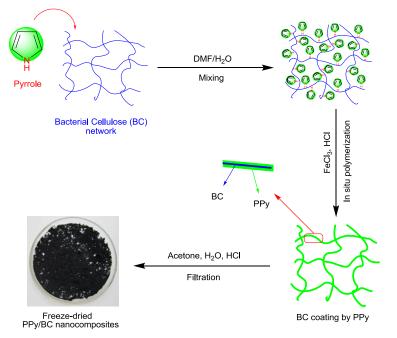


Figure S1. Schematic illustration of the process of preparation of PPy/BC in DMF/H_2O solvent.

TGA analysis: The thermal stability of as-prepared BC/PPy nanocomposite was studied by thermal gravimetric analysis (TGA).

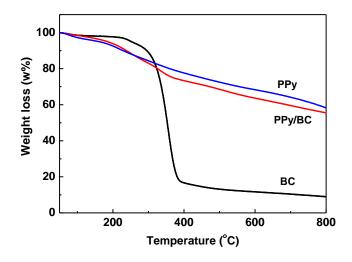


Figure S1. TG curves of pure BC, pure PPy and PPy/BC nanocomposites.

References

- Chan, H. S. O., Ho, P. K. H., Ng, S. C., Tan, B. T. G. & Tan, K. L. A new water-soluble, self-doping conducting polyaniline from poly(o-aminobenzylphosphonic acid) and its sodium salts: synthesis and characterization. *J. Am. Chem. Soc.* 117, 8517-8523 (1995).
- Kang, E. T., Neoh, K. G., Ong, Y. K., Tan, K. L. & Tan, B. T G. X-ray photoelectron spectroscopic studies of polypyrrole synthesized with oxidative Fe (III) salts. *Macromolecules* 24, 2822-2828 (1991).
- 3. Wang, J., Neoh, K. G., Kang, E. T. Comparative study of chemically synthesized and plasma polymerized pyrrole and thiophene thin films. *Thin Solid Films* **446**, 205-217 (2004).
- Ding, C., Qian, X., Yu, G., An, X. Dopant effect and characterization of polypyrrole-cellulose composites prepared by in situ polymerization process. *Cellulose* 17, 1067-1077 (2010).