Electronic Supplementary Information

Porous ZnO microtubes with excellent cholesterol sensing and catalytic properties

Arnab Kanti Giri,^a Apurba Sinhamahapatra,^a S. Prakash,^a Jayesh Chaudhari,^a Vinod Kumar Shahi^{* a} and Asit Baran Panda^{* a b}

^a Discipline of Inorganic Materials and Catalysis, Central Salt and Marine Chemicals Research Institute (CSIR), G.B. Marg, Bhavnagar-364002, Gujarat, India. Fax: +91-2782567562; Tel: +91-2782567760 Ext. 704;

E-mail: abpanda@csmcri.org, vkshahi@csmcri.org

^b Present address: Nano-Structured Materials Division, Central Glass & Ceramic Research Institute (CSIR), Raja SC Mullick Road, Kolkata, E-mail: asit012@gmail.com

Sl. No	ZnO (B) (g)	AMC (g)	EG (mL)	H ₂ O (mL)	Temp. (°C)	Time (h)	Shape	Sample name
1	0.5	2.5	0	60	27	24	Random flakes	-
2	0.5	2.5	10	50	27	24	Flakes with long range assembly	-
3	0.5	2.5	20	40	27	24	Mixed tube and flower	-
4	0.5	2.5	30	30	27	24	Tube	ZnO(T)
5	0.5	2.5	40	20	27	24	Tube assembly of individual flakes	-
6	0.5	2.5	50	10	27	24	Random flakes	-
7	0.5	2.5	60	0	27	24	No shape	-
8	1.5	7.5	90	90	120(R)	24	Nest like structure	ZnO(NS)
9	1.5	7.5	0	180	120(R)	24	Arranged flakes towards big flowers	ZnO(FFR)
10	1.5	4.5	90	90	130(HT)	24	Spindle shape flakes	ZnO(SSF)
11	1.5	4.5	0	180	130(HT)	24	Arranged flowers from flakes	ZnO(FFH)
12	4	10	0	160	27	0.5	Flakes like woolen thread ¹	ZnO(FWT)

Table S1Detailed synthetic condition for hydrozincite intermediate and their morphology.

B= Bulk; AMC= Ammonium carbonate; EG= Ethylene glycol; R= Reflux; HT= Hydrothermal

Electrode materials	Sensitivity	Linear range	LOD	Referance
	$(mA.M^{-1} cm^{-2})$	(mM)	(mM)	
Pt-Au@ZnONRs	26.8	0.0001-0.759	30	2
MWCNTs/SiO ₂ -CS	3.8	0.25–125	0.016	3
MWNTs-Au/PPD	0.559	0.5–6	0.200	4
DTSP-Au	0.054	0.2–2.1	0.022	5
ZnO	3.01	1.1-4.83	0.0220	6
polypyrrole	0.044	0.025-0.30	-	7
PANI-MWCNTs	6.8	1.29–2.93	-	8
Au Nanowire	0.85	0.01–0.06	-	9
ZnO(NT)/CT	54.5	0.4-4	0.200	This work

Table S2. Comparison of the performances of various types of cholesterol biosensors.

Table S3.Comparison of the catalytic activity of different heterogeneous catalyst systemreported in literature with the present ZnO microtube for the synthesis of 5-benzyl-1-H tetrazoleform benzonitrile and NaN3.

Entry	Catalyst	NaN ₃ ^a (mmol)	Temp. (°C)	Time (h)	Yield (%)	Ref.
1.	3D Porous ZnO (FWT)	1.1	125	14	87	1
2.	Bulk ZnO	1.1	125	14	51	
3.	ZnO nanoparticles	1.1	125	14	68	
4.	ZnO nanoparticles	1.1	120	14	72	10
	Mesoporous ZnS			36	84	
5.	HNO ₃ activated Mesoporous	2	120	12	60	11
	ZnS			36	96	
6.	CoY Zeolite	2	120	14	90	12
7.	Zn/Al hydrotalcite	1.5	120	12	84	13
8.	Zinc Hydroxyapatite	2	120	12	78	14
9.	FeCl ₃ -SiO ₂	1.5	120	12	79	15
10.	ZnO microtubes	1.1	125	14	92	Present work

^{a.} with respect to 1 mmol benzonitrile

Entry 1 The 3D Porous ZnO (FWT) synthesized as reported earlier

- Entry 2 The Bulk ZnO (commercial) which we have used as zinc source for 3D Porous ZnO structure.
- Entry 3 The ZnO nanoparticles were synthesized in our laboratory through precipitation method starting from zinc nitrate.
- Entry 4 Nano ZnO was employed for the reaction 72 % yield of 5-benzyl-1-H tetrazole was obtained which less than the present work.
- Entry 5 84 % yield was observed in 36h of reaction time over mesoporous ZnS. Whereas 96% yield was observed in same tine over HNO₃ mesoporous ZnS, but only 60 yield was observed in 12 h of reaction time with the HNO₃ mesoporous ZnS.

However, in all the cases they used excess amount of NaN₃.

- Entry 6 90% yield was obtain, but excess amount of NaN₃ was used.
- Entry7 Comparable yield was observed with higher amount of NaN₃.
- Entry 8 Lower yield was observed with higher amount of NaN₃.
- Entry 9 Lower yield was observed with higher amount of NaN₃ and catalyst.

Fig. S1 FT-IR spectra of hydrozincite microtube intermediate and the corresponding porous ZnO obtained after calcination ($500^{\circ}C/2$ h).

To confirm the formation of intermediate hydrozincite and the corresponding calcined product ZnO, the FT-IR experiment was performed in the detection range of 400-4000 cm⁻¹. The FTIR spectrum of the synthesized hydrozincite intermediate and product ZnO (Fig. S1) is very similar to that of the reported results.¹⁶⁻¹⁷ The characteristic sharp bands of hydrozincite at 701,

833, 1378, 1510 cm⁻¹ can be attributed to the C-O bending vibration of CO_3^{2-} . The broad band at 3365 cm⁻¹ is due to the hydroxyl group of hydrozincite and adsorbed water molecule. On calcination, the bands correspond to C-O bending vibration of CO_3^{2-} and hydroxyl or water molecules substantially weakened and confirm the decomposition of hydrozincite precursor to ZnO. However, the existence of the respective bands C-O vibration and water molecule with low intensity in the calcined ZnO can be attributed to the surface adsorbed CO_2 and water. In the previous reports the similar observation was reported ¹⁷ except the report of Wang *et al.*¹⁶, where they have not identified any band for corresponding adsorbed water molecule.

Fig. S2SEM images of the hydrozincite intermediates formed during the formation of microtubes with 50% of EG in water at room temperature, after (a) 4 h, (b) 8 h, (c) 12 h, (d &e) 18 h and (f) 30 h.

Referances:

- A. Sinhamahapatra, A. K. Giri, P. Pal, S. K. Pahari, H. C. Bajaj and A. B. Panda, *J. Mater. Chem.*, 2012, 22, 17227.
- [2] C. Wang, X. Tan, S. Chen, R. Yuan, F. Hu, D. Yuan and Y. Xiang, *Talanta*, 2012, 94, 263.
- [3] P. R. Solanki, A. Kaushik, A. A. Ansari, A. Tiwari and B.D. Malhotra, *Sens. Actuators B Chem.*, 2009,137, 727.
- [4] M. Guo, J. Chen, J. Li, L. Nie and S. Yao, *Electroanalysis.*, 2004, 16, 1992.
- [5] A. Parra, E. Casero, F. Pariente, L. Vázquez and E. Lorenzo, *Anal. Bioanal. Chem.*, 2007, 388, 1059.
- [6] Y. L. Chia and C. H. Kuo, AIP Conf. Proc., 2009, 123, 1137,.
- [7] J. C. Vidal, E. Garcia and J. R. Castillo, Anal. Chim. Acta., 1999, 385, 213
- [8] C. Dhand, S.K. Arya, M. Datta and B.D. Malhotra, Anal. Biochem., 2008, 383, 194.
- [9] A. I. Gopalan, K.-P.Lee and D. Ragupathy, *Biosens. Bioelectron.*, 2009, 24, 2211.
- [10] M. L. Kantam, K. B. S. Kumar and Ch. Sridhar, Adv. Synth. Catal., 2005, 347, 1212.
- [11] L. Lang, B. Li, W. Liu, L. Jiang, Z. Xu and G. Yin, Chem. Commun., 2010, 46, 448.
- [12] V. Rama, K. Kanagaraj and K. Pitchumani, J. Org. Chem., 2011, 76, 9090.
- [13] M. L. Kantam, K.B. S. Kumar and K. P. Raja, J. Mole. Catal. A: Chem., 2006, 247, 186.

- [14] M. L. Kantam, V. Balasubrahmanyam and K. B. S. Kumar, Syn. Commun., 2006, 36, 1809.
- [15] M. Nasrollahzadeh, Y. Bayat, D. Habibi and S. Moshaee, *Tetrahedron Lett.*, 2009, 50, 4435.
- [16] X. Wang, W. Liu, J. Liu, F. Wang, J. Kong, S. qiu, C.He and L. Luan, ACS Appl. Mater. Interface, 2012, 4, 817.
- [17] Z. Xing, B. Geng, X. Li, H. Jiang, C. Feng and T. Ge, *Cryst. Eng. Commun.* 2011, 13, 2137.