## **Supporting information**

## **Experimental section**

Materials: Fluorine-doped tin oxide conductive glass was obtained from Nippon Sheet Glass Co., Japan. Poly (ethylene naphthalate) was obtained from Peccell Co., Japan. Titanium dioxide slurry (DHS-TPP3 and DHS-TPP200, hydrothermal titanium dioxide dispersed in terpinol) and powder (DHS-SN1760-500) were obtained from Dalian Heptachroma Solartech Co., Ltd.

Calculation of the specific capacitance: The discharge capacitance of each cell was calculated according to the following equation:  $C=2(I^*\Delta t)/(m^*\Delta V)$ , where *C* is the specific capacitance, while *I*,  $\Delta t$ , *m*, and  $\Delta V$  are discharge current, discharge time, electrode weight, and voltage variation in the time range, respectively.<sup>S3</sup>

Calculation of the entire energy conversion and storage efficiency of the integrated device: The entire energy conversion and storage efficiency is calculated by the equation of  $\eta_{entire} = \eta \Delta V J S_1 t_1 / (P_{in} S_2 \eta t_2)$ , where  $\eta_{entire}$  is the entire energy conversion and storage efficiency,  $\eta$  is the photoelectric conversion efficiency,  $\Delta V$  and  $t_1$  are the voltage variation and discharging time during galvanostatic discharge, respectively. J is the constant galvanostatic discharge current density of 1.4 mA cm<sup>-2</sup>,  $S_1$  is the effective area of energy storage part,  $P_{in}$  is the incident light power density (100mW cm<sup>-2</sup>),  $S_2$  is the effective area of photoelectric conversion part and  $t_2$  is the illumination time during photocharging.



Fig. S1. Photograph of an integrated device with aligned MWCNT films as electrodes.



**Fig. S2.** Photograph of a MWCNT array compared with a coin with thickness of about 2 mm.



Fig. S3. Schematic illustration for the preparation of aligned MWCNT film.



Fig. S4. Photograph of a free-standing and aligned MWCNT film.



**Fig. S5.** Dependence of the thickness of MWCNT films on the height of MWCNT arrays.



Fig. S6. Raman spectra of MWCNTs, PANI, and MWCNT/PANI composite.



Fig. S7. Dependence of the specific capacitance on the thickness of MWCNT films. **a.** The specific capacitance of supercapacitor based on bare MWCNT films as electrodes with the increasing thickness from 10 to 50  $\mu$ m. **b.** The specific capacitance of supercapacitor based on MWCNT/PANI composite films as electrodes with the increasing thickness from 10 to 50  $\mu$ m. The same weight of PANI was used in all composite films.



**Fig. S8.** Self discharge of the integrated device based on a MWCNT/PANI composite film.



**Fig. S9.** Specific capacitances for the integrated device based on the MWCNT/PANI composite film during bending. Here  $C_0$  and C correspond to specific capacitances before and after bending, respectively.



**Fig. S10.** The dynamic voltage of the photo-supercapacitor with bare MWCNT and MWCNT/PANI composite films as electrodes in PVA-H<sub>3</sub>PO<sub>4</sub> electrolyte under AM1.5 illumination during the photocharging process.

## **References for the Supporting Information**

- S1. F. Li, J. J. Shi and X. Qin, Chinese Sci. Bull. 2009, 54, 3900-3905.
- S2. S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida and M. Grätzel, *Adv. Mater.* 2006, *18*, 1202-1205.
- S3. C. Yu, C. Masarapu, J. Rong, B. Wei and H. Jiang, *Adv. Mater.* **2009**, *21*, 4793-4797.