COMPARISON OF FUNCTIONALIZED CARBON NANOFIBERS AND MULTI-WALLED CARBON NANOTUBES AS SUPPORTS FOR Fe-Co NANOPARTICLES

D. Vidick, M. Herlitschke, M. Devillers, C. Poleunis, A. Delcorte, R. P. Hermann, S. Hermans

Electronic Supplementary Information (ESI)

Experimental setup for pseudo in-situ XPS measurements

For pseudo in-situ XPS measurements, the spectrometer is equipped with a reaction cell fitted on the sample transfer chamber. The powder sample is pressed in a small stainless steel trough of 4mm diameter and 0.5mm depth. This trough is inserted in a stainless steel stub in which it is maintained by a small spring. The cell body is made of quartz and is heated by a boron nitride insulated heater. The temperature is controlled by a k type thermocouple incorporated in the pin in which the sample stub is inserted. The requested temperature is adjusted using a MicroMega temperature programmer, the maximum temperature being 1000 °C at 1 mbar. A hand grip assembly is used to open and close the cell door in a vertical plane. Gas in and out lines are passing through the cell door and the reaction gas (here N₂) is introduced via a precision micrometer valve in the quartz reaction cell. The base of the cell is cooled by a copper tube which, in turn, is cooled by a water cooled flange at the top of the cell housing. The door of the cell is cooled using compressed air. After reaction, the gas cell is pumped down, then it is opened and the stub holding the sample is transferred in the specimen transfer chamber and then the analysis chamber, where the XPS analyses are performed. Samples are thus never re-exposed to air. The following experimental conditions were used for temperature programmation: increase up to 300°C with a heating ramp of 100°C/h, keeping 1h at 300°C, and then decrease to room temperature.

Table S1. O/C XPS ratios for	r different oxidation	reaction durations	of MWCNT.
------------------------------	-----------------------	--------------------	-----------

XPS	Oxidation duration (refluxing HNO ₃)										
	2h	4h	бh	8h	12h	16h	24h				
O/C	0.055	0.060	0.065	0.054	0.054	0.059	0.085				

(a)

Figure S2. SEM images of MWCNT-OX : (a) after 2h and (b) after 24h of treatment with HNO_3 under refluxing conditions.

(b)

Figure S3. XPS spectra of $CNF-NMe_3^+$ at RT (top) and heated at 300°C (below) obtained in the tubular oven in the (a) C 1s, (b) O 1s, (c) N 1s, (d) Cl 2p, and (e) S 2p regions.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is O The Royal Society of Chemistry 2012

Figure S4. XPS spectra of CNF-PPh₂ at RT (top) and heated at 300°C (below) obtained in the tubular oven in the (a) C 1s, (b) O 1s, (c) N 1s, (d) Cl 2p, and (e) P 2p regions.

Fig. S5. Incorporation yield (%) of $[HFeCo_3(CO)_{12}]$ (a) on CNF and (b) on MWCNT and of $(NEt_4)[FeCo_3(CO)_{12}]$ (c) on CNF and (d) on MWCNT.

Cluster species	Solvent(s)	Solution color	$v_{\rm CO} ({\rm cm}^{-1})$	Interpretation
	toluene	purple	2103w 2060s 2051s 2028m 1986m 1881m	Protonated, neutral
	THF	brown	2061w 2002s 1965w 1932m	Deprotonated,
		010 111	1822m	charged
	acetone	brown	2106w 2063m 2051m 2005s	Protonated and
	accione	UIUWII	1971m 1933m	deprotonated
	toluene/THF	brown	2062w 2002s 1969w 1932m	Deprotonated,
[11 0005(007)2]		biown	1822m	charged
	toluene/acetone	brown	2106w 2063m 2051m 2003s	Protonated and
			1976m 1930m 1878m 1826m	deprotonated
	THF/acetone	brown	2062w 2003s 1968w 1932m	Deprotonated,
			1820m	charged
	CCL		2098w 2058s 2051s 2030m 1988m	Protonated neutral
	CC14	purple	1889s ^a	Totollated, lieutral
	toluene	-	Not soluble	-
	THE	brown	2061w 2001s 1967w 1932m	Unchanged charged
$(NEt_4)[FeCo_3(CO)_{12}]$	1111	UIUWII	1822m	Chenangeu, enargeu
	acetone	brown	2063w 2005s 1969w 1932m	Unchanged charged
	actione	UIUWII	1826m ^a	Unenangeu, enargeu

Table S6. Carbonyl stretching frequencies of $[H_nFeCo_3(CO)_{12}]^{n-1}$ (n = 0, 1) in different solvents.

^a taken from: Armstrong RS, Bell T, Masters AF, Williams MA. Fischer-Tropsch catalysts derived from surface confined $[H_nFeCo_3(CO)_{12}]^{n-1}$ (n = 0, 1). Polyhedron 1990; 9: 2815-22.

Cluster	Weight	Final	Calculated weight loss (%)
	loss (%)	decomposition	
		temperature	
		(°C)	
[HFeCo ₃ (CO) ₁₂] (1)	56	200	59 (= 12 CO +H)
$(NEt_4)[FeCo_3(CO)_{12}]$ (2)	61	300	67 (= 12 CO + NEt ₄)

Table S7. Thermogravimetric analyses of pure clusters.

Table S8. Loading and XPS results for the incorporation of $[HFeCo_3(CO)_{12}]$ (1) on different types of CNF.

			Metal			XPS		
C 1	C	C 1	lu l'a		Before a	activation	After a	ctivation
Sample	Support	Solvent	(wt.%) ^b	Co/C _{calc} ^c	Co/C	(Co/C) _{exp} /	Co/C	(Co/C) _{exp} /
			(((((,)))))		Co/ Cexp	(Co/C) _{calc}	Co, Cexp	(Co/C) _{calc}
CNF1	CNF I HT	Tol	5.0	0.008	0.015	1.9	0.017	2.1
CNF2	CIVI-LIII	THF	5.1	0.008	0.013	1.7	0.024	3.0
CNF3	CNE PS	Tol	5.2	0.008	0.024	3.0	0.029	3.7
CNF4	CNI-F5	THF	2.8	0.004	0.011	2.9	0.011	2.7
CNF5	CNE OX	Tol	4.1	0.006	0.059	9.8	0.080	13.3
CNF6	CNF-OA	THF	4.0	0.006	0.065	10.8	0.055	9.1
CNF7		Tol	0.4	0.001	0.037	37.4	0.043	42.9
CNF8		THF	5.0	0.008	0.061	7.7	0.065	8.1
CNF9	CNF-NMe ₃ ⁺	THF/Tol	3.4	0.005	0.038	7.6	0.032	6.4
CNF10		THF/Acet	2.1	0.003	0.017	5.8	0.018	5.9
CNF11		Tol/Acet	1.0	0.002	0.015	7.6	0.016	8.1
CNF12		Tol	5.2	0.008	0.078	9.7	0.096	12.0
CNF13		THF	2.5	0.004	0.032	8.0	0.031	7.8
CNF14	CNF-PPh ₂	THF/Tol	3.4	0.005	0.033	6.7	0.038	7.7
CNF15		THF/Acet	0.6	0.001	0.012	11.3	0.011	11.4
CNF16		Tol/Acet	1.0	0.002	0.013	6.3	0.013	6.3

^a Tol = toluene and Acet = acetone.

^b Metal loading has been calculated from the incorporation yield determined by atomic absorption of cobalt in the synthesis filtrates.

Table S9. Loading and XPS results for the incorporation of $[HFeCo_3(CO)_{12}]$ (1) on different types of MWCNT.

						XPS		
			Metal		Before a	activation	After a	ctivation
Sample Suppo	Support	Solvent [*]	(wt.%) ^b	Co/C _{calc} ^c	Co/C _{exp}	(Co/C) _{exp} / (Co/C) _{calc}	Co/C _{exp}	(Co/C) _{exp} / (Co/C) _{calc}
MWCNT1		Tol	2.6	0.004	0.004	1.0	0.004	1.1
MWCNT2	MWCNT	THF	4.6	0.007	0.012	1.7	0.012	1.7
MWCNT3	MWCNIT OY	Tol	5.3	0.008	0.024	3.0	0.022	2.7
MWCNT4	MWCNI-OX	THF	5.3	0.008	0.016	2.0	0.017	2.1
MWCNT5	MWCNT-NMe ₃ ⁺	THF	4.9	0.008	0.012	1.4	0.013	1.6
MWCNT6	MWCNT-PPh ₂	Tol	4.7	0.007	0.015	2.2	0.013	1.9

^a Tol = toluene and Acet = acetone.

^b Metal loading has been calculated from the incorporation yield determined by atomic absorption of cobalt in the synthesis filtrates.

Table S10. Loading and XPS results for the incorporation of $(NEt_4)[FeCo_3(CO)_{12}]$ (2) on different types of CNF.

			Maral			XPS		
Sample Support Solvent ^a		loading (wt.%) ^b	Co/C _{calc} ^c	Before a	activation (Co/C) _{exp} / (Co/C) _{calc}	After a Co/C _{exp}	ctivation (Co/C) _{exp} / (Co/C) _{calc}	
CNF17	CNF-LHT	THF/Acet	0		No incorporatio			
CNF18	CNF-PS	THF/Acet	0	No incorporation				
CNF19	CNF-OX	THF/Acet	1.6	0.002	0.026	13.1	0.017	8.3
CNF20		THF	0.9	0.001	0.008	8.2	0.011	10.7
CNF21		THF/Tol	0.9	0.001	0.017	16.9	0.017	17.5
CNF22	CNF-NMe ₃	THF/Acet	1.6	0.003	0.030	10.1	0.028	9.4
CNF24		Tol/Acet	1.5	0.002	0.016	7.9	0.020	9.9
CNF25		THF	0.4	0.001	0.006	5.9	0.007	7.6
CNF26	CNE DDb	THF/Tol	0.5	0.001	0.006	6.4	0.007	6.9
CNF27	CINF-FFfi ₂	THF/Acet	1.2	0.002	0.015	7.8	0.019	9.6
CNF28		Tol/Acet	0.8	0.001	0.006	6.1	0.010	9.9

a Tol = toluene and Acet = acetone.

^b Metal loading has been calculated from the incorporation yield determined by atomic absorption of cobalt in the synthesis filtrates.

Table S11. Loading and XPS results for the incorporation of $(NEt_4)[FeCo_3(CO)_{12}]$ (2) on different types of MWCNT.

			Metal					
					Before a	activation	After a	ctivation
Sample	Support	Solvent ^a	loading					
			L	Co/C _{calc} ^c		(Co/C) _{exp} /		(Co/C) _{exp} /
			$(wt.\%)^{\circ}$		Co/C _{exp}		Co/C _{exp}	
						$(Co/C)_{calc}$		$(Co/C)_{calc}$
MWCNT7	MWCNT	THF/Acet	1.2	0.002	-	-	0.002	1.0
MWCNT8	MWCNT-OX	THF/Acet	1.8	0.003	0.006	2.0	0.006	2.0
	MWCNT-							
MWCNT9		THF/Acet	2.8	0.004	0.007	1.9	0.007	1.9
	NMe_3^+							
MWCNT10	MWCNT-PPh ₂	THF/Acet	1.0	0.002	0.002	1.3	0.001	0.9

^a Tol = toluene and Acet = acetone.

^b Metal loading has been calculated from the incorporation yield determined by atomic absorption of cobalt in the synthesis filtrates.

Figure S12. (a) SEM image of cluster [HFeCo₃(CO)₁₂] (1) after thermal treatment on CNF-LHT, (b) EDXS analysis of the white particle in image (a) and (c) EDXS analysis of the zone on the bottom left-hand side in image (a).

Figure S13. Histograms of particles sizes distributions (from TEM images) for cluster $[HFeCo_3(CO)_{12}]$ (1): (a) on CNF-LHT, (b) on CNF-OX, (c) on CNF-NMe₃⁺, (d) on CNF-PPh₂ from THF and (e) on CNF-PPh₂ from toluene and for cluster (NEt₄)[FeCo₃(CO)₁₂] (2): (f) on CNF-OX and (g) on CNF-NMe₃⁺.