Supporting Information

Scalable synthesis of hollow Cu₂O nanocubes with unique optical

properties via a simple hydrolysis-based approach

Hui Liu, Yue Zhou, Sergei A. Kulinich, Jia-Jun Li, Li-Li Han, Shi-Zhang Qiao, Xi-Wen Du^*

1. Raw CuCl micropowder.

Figure S1. (a) SEM and (b) TEM images of raw CuCl micro-powder used as initial

material.

2. Characterizations of hollow Cu₂O nanocubes.

Figure S2. (a) HRTEM image and SAED pattern (b) of the shell of a hollow Cu_2O

nanocube.

3. Calculation of the pH threshold value for the complexation of CuCl in aqueous solutions.

The dissolution of CuCl in aqueous HCl proceeds in accordance with the following reactions:

Ionization
$$\operatorname{CuCl} \leftrightarrow \operatorname{Cu}^{+} + \operatorname{Cl}^{-}$$
 (1)
Complexation $\operatorname{CuCl} + x \operatorname{HCl} \leftrightarrow \operatorname{H}_{x} \operatorname{CuCl}_{1+x}$ (x=1, 2) (2)

Therefore, the total solubility (**S**) of CuCl can be represented as the sum of several soluble Cu-containing species: ^[1]

$$S = c_{Cu^{+}} + c_{CuCl(aq)} + c_{CuCt_{2}} + c_{CuCt_{2}^{2^{-}}}$$
$$= c_{Cu^{+}} + \beta_{1}c_{Cu^{+}}c_{Cr} + \beta_{2}c_{Cu^{+}} \cdot c_{Cr}^{2} + \beta_{3}c_{Cu^{+}} \cdot c_{Cr}^{3}$$
$$= K_{sp}(1/c_{Cr} + \beta_{1} + \beta_{2}c_{Cr} + \beta_{3}c_{Cr}^{2})$$
(3)

where K_{sp} is the equilibrium constant, c_{Cu^+} and c_{Cl^-} are the concentrations of Cu⁺ and Cl⁻ ions, respectively. β_{I}, β_{2} , and β_{3} are the cumulative stabilization constants of CuCl, CuCl₂, and CuCl₃²⁻, respectively ($\beta_{I} = 2.43 \times 10^{-3}$, $\beta_{2} = 6.91 \times 10^{4}$, $\beta_{3} = 4.55 \times 10^{5}$).^[1]

When the pH value of the aqueous solution is adjusted by adding HCl, two effects can influence the solubility of CuCl. As the added amount of HCl increases, first the common-ion effect takes place, where the increase of Cl⁻ ion concentration can lower the solubility of CuCl, and the concentration of Cu-containing species reaches a minimum value. Further addition of HCl can cause the other effect, complexation, where HCl can react with CuCl, giving rise to soluble H_xCuCl_{1+x} and thus improving the solubility of CuCl.

Therefore, the lowest concentration of Cu-containing species (or the minimum solubility of CuCl) corresponds to the concentration of Cl⁻ ions at which the complexation reaction begins to proceed. This value can be determined by:

$$dS/dc_{CI^{-}} = K_{sp}(-1/c_{CI^{-}}^{2} + \beta_{2} + 2\beta_{3}c_{CI^{-}}) = 0$$
(4)

which gives $c_{C\Gamma(min)} = 3.72 \times 10^{-3}$ M

The ionization constant of CuCl is 1.72×10^{-7} , which is much lower than that of HCl in water. Hence, most of Cl⁻ ions originate from the ionization of HCl. As a result, the concentration of H⁺ ions is nearly equal to that of Cl⁻ ions.

$$pH = -\lg c_{H^+} = -\lg 3.72 \times 10^{-3} = 2.43$$

Therefore, the complexation reaction takes place when pH is below 2.43.

4. Calculation of the lower pH limit for the alkaline hydrolysis of CuCl in aqueous solution.

The ionization constant (K_a) of CuCl can be calculated based on the ionization reaction [equation (1)]:

$$K_a = \frac{c_{Cu^+} \cdot c_{Cl^-}}{c_{CuCl}} \tag{5}$$

where, $K_a = 1.72 \times 10^{-7}$ for CuCl in water.

The saturated solubility of CuCl in water (s_{CuCl}) is 6.061×10⁻⁴ M,^[2] and

$$c_{CuCl} = s_{CuCl} - c_{Cu^+}$$
$$c_{Cu^+} = c_{Cl^-}$$

According to the above, the concentration of Cu⁺ ions in the saturated CuCl aqueous solution is determined as $c_{Cu^+} = 1.0124 \times 10^{-5}$ M.

The corresponding pH value of the saturated CuCl aqueous solution is then calculated as follows. A hydrolysis equilibrium exists in the saturated CuCl aqueous solution

$$H_2O + Cu^+ \leftrightarrow CuOH + H^+$$

The dissolution equilibrium constant K_{sp6} of reaction (6) follows:

$$K_{sp6} = \frac{c_{H^+} \cdot c_{Cu0H}}{c_{Cu^+} - c_{H^+}} = \frac{c_{H^+} \cdot c_{H^+}}{c_{Cu^+} - c_{H^+}}$$
(7)

The constant K_{sp6} for the hydrolysis of CuCl is unknown. However, equation (6) can be departed into two basic equations:

$$H_2O \leftrightarrow OH^- + H^+$$
(8)
$$CuOH \leftrightarrow Cu^+ + OH^-$$

(9)

(6)

Occasionally, both of them have the same dissolution equilibrium constant (see ref.^[2]) presented below:

$$K_w = K_{sp9} = 1 \times 10^{-14}$$

Since Equation 6 = Equation 8 - Equation 9, the dissolution equilibrium constant of Equation 6 can be obtained as:

$$K_{sp6} = \frac{K_w}{K_{sp9}} = 1$$
(10)

The following equation can be obtained by combing Equation 6 with Equation 10:

$$(c_{H^+})^2 + c_{H^+} - c_{Cu^+} = 0$$
 (11)
 $c_{H^+} = 1.0124 \times 10^{-5} \,\mathrm{M}$

The pH value of the saturated CuCl aqueous solution is then determined as:

$$pH = -\lg c_{H^+} = 4.995$$

5. Characterization of the product of the reaction of CuCl with water at different pH values

Figure S3. TEM images of the product of the reaction between CuCl and water at different pH values, (a) 4.3, (c) 8.5. HRTEM images of the product of the reaction of CuCl with water at different pH values, (b) 4.3, (d) 8.5.

Figure S4. SEM image (a) and XRD pattern (b) of the CuCl nanocubes obtained after the dissolution of CuCl micro-powder in acidic water (pH=0.5) followed by an increase in pH to 6.5 for a few seconds.

Figure S5. XRD patterns of the product after the reaction of CuCl with water (pH 6.5) for different times.

6. TEM images of the intermediate products of the reaction of CuCl with water

at pH of 6.5 for different times.

Figure S6 TEM images of the intermediate products obtained through the reaction of CuCl with water at pH of 6.5 for different times. (a) the product obtained after 2 min reaction, (b) high resolution TEM image of a Cu_2O nanoparticle on a CuCl nanocube in (a), (c) the product obtained after 5 min reaction, (d) high magnification TEM image of a CuCl nanocube in (c).

7. Characterization of the conjunction of hollow Cu₂O nanocubes with RhB

References:

- [1] D. F. Liu, L.T. Huang, and W. Dong, *Inorganic Chemicals Industry* 2008, **40**, 27-29.
- [2] J. A. Dean, Lange's Handbook of Chemistry, 15th.ed. 1999.