Lin et al.

Electronic Supplementary Information

Photoactive p-Type PbS as a Counter Electrode for Quantum Dot-

Sensitized Solar Cells

Cheng-Yu Lin,^a Chiao-Yi Teng,^a Tzung-Luen Li,^a Yuh-Lang Lee,^a and Hsisheng Teng^{*,a,b}

^a Department of Chemical Engineering and Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan

^b Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan

*E-mail address: hteng@mail.ncku.edu.tw; Tel: 886-6-2385371, Fax: 886-6-2344496

Electronic Supplementary Information for:

- (S1) the influence of the SISCR cycle number on the PbS electrode performance in QDSSCs;
- (S2) the incident photon to current conversion efficiency of the PbS- and CuS-

QDSSCs.

Fig. S1 Photocurrent-voltage characteristics of QDSSCs assembled with the $TiO_2/CuInS_2$ -QDs/CdS/ZnS photoanode and the PbS counter electrodes of varying SISCR cycles (indicated in the parentheses) under simulated solar illumination at 100 mW cm⁻².

Lin et al.

Fig. S2 Incident photon to current conversion efficiency (IPCE) of the PbS- and CuS-QDSSCs. The spectra were measured by the DC mode method, using an IPCE analyzer (Enlitech QE-R 3011, Taiwan).