Supporting Information ## Pyridine-based Electron Transporting Materials for Highly Efficient Organic Solar Cells Hao-Wu Lin ^{a,*}, Chih-Wei Lu^a, Li-Yen Lin^b, Yi-Hong Chen^a, Wei-Chieh Lin^a, Ken-Tsung Wong^b, Francis Lin^b ## 1. Effect of electron transporting layer thickness Fig. S1 shows the spectral mismatch corrected *J*-V characteristics of different BCP and TmPyPB thicknesses in the optimized device structure and the device performances are listed in Table S1. Table S1 Performance parameters of the devices. | Device type | ETL (thickness) | $J_{\rm sc}~({\rm mA/cm^2})$ | $V_{oc}(V)$ | FF | PCE (%) | |------------------------|-----------------|------------------------------|-----------------|-----------------|-----------------| | | BCP (10 nm) | 14.91 ± 0.17 | 0.78 ± 0.01 | 0.47 ± 0.01 | 5.6 ± 0.1 | | | BCP (12 nm) | 12.35 ± 0.16 | 0.81 ± 0.01 | 0.42 ± 0.01 | 4.3 ± 0.1 | | DTDCTB:C ₇₀ | BCP (20 nm) | 5.15 ± 0.05 | 0.81 ± 0.01 | 0.18 ± 0.01 | 0.81 ± 0.01 | | (1:1.6) | TmPyPB (10 nm) | 14.61 ± 0.36 | 0.79 ± 0.01 | 0.52 ± 0.01 | 6.1 ± 0.2 | | | TmPyPB (12 nm) | 12.56 ± 0.32 | 0.81 ± 0.01 | 0.52 ± 0.01 | 5.4 ± 0.1 | | | TmPyPB (20 nm) | 1.31 ± 0.20 | 0.79 ± 0.01 | 0.21 ± 0.01 | 0.23 ± 0.04 | ^a Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013. E-mail: hwlin@mx.nthu.edu.tw ^b Department of Chemistry, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei, Taiwan 10617. **Fig. S1** (a) Mismatch corrected *J*-V characteristics (under 1 sun, AM 1.5G illumination) of the devices with the following structures: ITO/MoO3 (5 nm)/DTDCTB (7 nm)/DTDCTB:C70 (1:1.6 by volume, 40 nm)/C70 (7 nm)/BCP (10, 12, 20 nm)/Ag (150 nm). (b) Mismatch corrected *J*-V characteristics (under 1 sun, AM 1.5G illumination) of the devices with the following structures: ITO/MoO3 (5 nm)/DTDCTB (7 nm)/DTDCTB:C70 (1:1.6 by volume, 40 nm)/C70 (7 nm)/TmPyPB (10, 12, 20 nm)/Ag (150 nm).