Supplementary Information

Mg-doping: a facile approach to impart enhanced arsenic adsorption performance and

easy magnetic separation capability to *α*-Fe₂O₃ nanoadsorbents

Wenshu Tang,^a Yu Su,^a Qi Li,^{*a} Shian Gao,^a and Jian Ku Shang^{ab}

^aMaterials Center for Water Purification

Shenyang National Laboratory for Materials Science

Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China

^bDepartment of Materials Science and Engineering

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

*Corresponding author.

E-mail address: gili@imr.ac.cn.

Phone: +86-24-83978028, Fax: +86-24-23971215.

Postal address: 72 Wenhua Road, Shenyang, Liaoning Province, 110016, P. R. China.

Supplementary Information

The total arsenic concentration determination in natural water samples

The total arsenic concentration could be determined by inductively coupled plasma-mass spectrometry (ICP-MS), atomic absorption spectrometry (AAS), or atomic fluorescence spectrometry (AFS).¹ The measurement methods based on AAS or AFS coupled with vapor generation techniques such as hydride generation (HG) could offer a low-cost alternative to ICP-MS. Because the sensitivities differ among hydride-forming As species, each species may exhibits a different peak height for the same As concentration. Thus, it is desirable to first convert arsenic species into a single species (either As(III) or As(V),¹ so a single hydride could be generated for detection and quantitation. A variety of pre-reduction agents, including sodium iodide with hydrochloric acid,² tartaric acid solution with hydrochloric hydroxylamine,³ thiourea with ascorbic acid, 4,5 and KI,⁶ were used in literature to prereduce As(V) to As(III). In our experiment, thiourea and ascorbic acid were used as the pre-reduction agent to reduce As(V) to As(III) in the natural water samples before measuring the total arsenic by an atomic fluorescence spectrophotometer (AFS-9800). Besides serving as the pre-reduction agent, thiourea and ascorbic acid could also serve as the masking agent on other ions in the solutions.

Tables:

	Mg (at %)	Fe (at %)	O (at %)	composition formula
ICP-MS analysis	3.97	36.89	59.14	$Mg_{0.27}Fe_{2.50}O_{4.00}$
XPS analysis	3.99	36.80	59.21	Mg _{0.27} Fe _{2.49} O _{4.00}

Table S1. Composition contents by ICP-MS and XPS analysis

Table S2. The adsorption capacity of the synthesized magnesium ferrite nanocrystallites and various reported iron oxides for arsenic removal

Adsorbents	рН	Arsenic equilibrium	Capacity (mg/g)		Poforoncos
		concentration (mg/L)	As(III)	As(V)	Kelelelices
Magnesium ferrite	7.0	0.005	9.3	10	Present study
α -Fe ₂ O ₃ NPs	7.0	0.005	5.6	6.9	7
Goethite	7.0	10	~	2.0	8
Hematite	4.2	10	~	0.20	9
Ferrihydrite	~	0.325	~	0.25	10
Iron oxide coated sand	7.6	0.1	0.041	0.043	11
Fe-Mn oxides	8.5	100	5.0	3.7	12

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is The Royal Society of Chemistry 2012

Supplementary Information

Figures:

Figure S1. The SEM image, EDS, and elementary distribution map for FM10 sample.

Supplementary Information

References

- 1. K. Ito and C. D. Palmer, J. Anal. At. Spectrom., 2010, 25, 822.
- 2. M. Pistón and J. Silva, Environ Geochem Health., 2012, 34, 273.
- 3. N. V. Semenova and L. O. Leal, Analytica Chimica Acta., 2002, 455, 277.
- 4. J. J. Han and F. Xu, Spectrosc Spect Anal., 2010, 30, 2567.
- 5. J. X. Liu and Y. P. Wu, Spectrosc Spect Anal., 2008, 28, 2691.
- 6. A. Martinez and A. Morales-Rubio, J. Anal. At. Spectrom., 2001, 16, 762.
- 7. W. Tang, Q. Li, S. Gao and J. K. Shang, J. Hazard. Mater., 2011, 192, 131.
- P. P. Lakshmipathiraj, B. R. V. Narasimhan, S. Prabhakar, and G. B. Raju, *J. Hazard. Mater.*, 2006, 136, 281.
- 9. D. B. Singh, G. Prasad and D. C. Rupainwar, Colloid Surf. A., 1996, 111, 49.
- O. S. Thirunavukkarasu, T. Viraghavan and K. S. Suramanian, *Water Air Soil Pollut.*, 2003, 142, 95.
- 11. M. Badruzzaman, P. Westerhoff and D. R. U. Knappe, Water Res., 2004, 38, 4002.
- 12. E. Deschamps, V. S. T. Ciminelli and W. H. Höll, Water Res., 2005, 39, 5212.