Formation of WO₃ Nanotube-based Bundles Directed by NaHSO₄ and Its Application in Water Treatment

Jin Li,^a Xiaoheng Liu,^{*a} Qiaofeng Han,^a Xiaxi Yao,^a Xin Wang^{*a}

^a Key Laboratory of Education Ministry for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, 5 China.

sample	pore size	BET surface area ^ª	pore volume	micropore surface $area^{\flat}$
	(nm)	(m^2/g)	(cm^3/g)	(m^2/g)
as-obtained WO_3	12.50	27.83	0.05	6.32

Table S1. Pore size, BET surface area, micropore surface area and pore volume parameters of the sample.

a: Calculated from the desorption branches. b: Calculated by the V-t method.

10

20

Scheme S1. A possible process of nitrogen liquefaction inside a long nanotube during BET measurement.

Scheme S1 describes a possible result of nitrogen absorption inside a long nanotube during BET measurement. Because the nanotube with the length of more than 1 µm (Fig. 1a and Fig. S2a) is too long, condensed nitrogen liquid can block two inlet of the nanotube. Thus 15 not all inside surface can be occupied by nitrogen molecules, resulting in false data (surface area and pore volume) listed in Table S1.

Fig. S1. XRD patterns of the as-obtained samples prepared with NaHSO4, NH4HSO4, KHSO4, respectively.

Fig. S1 presents XRD patterns of three WO_3 samples prepared with NaHSO₄, NH₄HSO₄ and KHSO₄, respectively. The sample from NaHSO₄ has highest crystallinity, while the crystallization of other two samples is quite different from NaHSO₄-assisted.

Fig. S2. SEM images of the WO₃ samples prepared with different reagents: (a) NaHSO₄, (b) NH₄HSO₄, (c) KHSO₄.

The SEM observations (Fig. S2) can also present analogous result. Fig. S2a exhibits WO_3 sample from NaHSO₄ with rod-like ⁵ morphology, but the others (Fig. S2 b,c) exhibit spherical morphology.

Fig. S3. (a) TEM image of the WO₃ sample in Fig. S2(a). (b) Energy dispersive X-ray spectroscopy (EDS) of the WO₃ sample in Fig. S3(a).

Fig. S3a is a TEM image of the WO₃ sample in Fig. S2a, and the structure of nanotube bundles can be seen. Furthermore, the chemical composition of the obtained nanotube bundles was analyzed by using energy-dispersive spectroscopy (EDS). The EDS spectrum (Fig. ¹⁰ S3b) exhibits the existence of W and O with a molar ratio close to 1:3.