Molecular Dynamics Simulations of Side Chain Pendant of Perfluorosulfonic Acid Polymer Electrolyte Membranes

Anurag Prakash Sunda and Arun Venkatnathan*

Supporting Information

Table S1. Force field parameters for side chain pendants (Dow, Aciplex and Nafion).

Atom	σ (nm)			$\epsilon (kJ mol^{-1})$			
С	0.350			0.276144			
F	0.295			0.221752			
S		0.355		1.406000			
0		0.300		0.711280			
0		0.296		0.711280			
Bond		r (nm)		$k_b(1)$	kJ mol ⁻¹ nm ⁻¹)	
C-F		0.1332			307105.6		
C-C		0.1529			224262.4		
C-0		0.1410			267776.0		
C-S		0.1810			185769.6		
S-O		0.1440	0.1440 585760.0				
Bond angle		θ_0 (deg) k_{θ} (kJ mol ⁻¹ rad ⁻¹))		
F-C-F	109.1 644.336						
F-C-S	109.5				418.400		
F-C-C		109.5	418.400				
F-C-O		109.8			425.000		
C-C-C	112.5				488.273		
C-C-O	109.5				418.400		
C-O-C		116.9			694.544		
C-S-O	108.9 619.232						
O-S-O ^a		119.0 870.272					
Dihedral		Di	hedral coeffici	tient (kJ mol ⁻¹)			
angle	\mathbf{C}_0	C ₁	C_2	C ₃	C_4	C ₅	
C-C-C-F ^b	0.2460	-0.3285	0.5831	1.8585	7.4668	0.3716	
F-C-C-F ^b	0.7084	0.6226	0.9997	0.3564	14.9016	-6.1012	

1

F-C-C-O ^b	0.1936	1.0729	0.6616	1.9442	12.1706	-6.6721
C-C-S-O ^b	-0.5741	1.0065	-0.5901	0.9551	11.2104	-0.0044
C-C-O-C ^c	47.1740	-44.0367	1.7176	-6.8656	0.0	0.0
F-C-O-C ^c	45.1736	46.0834	3.0942	-159.279	0.0	0.0

^aRef. No. 59, ^bPeriodic function (this work-from eq. 2), and ^cPeriodic function (this work-from eq. 3)

Table S2. Box length and density (ρ) obtained from a 10 ns equilibration run for side chain pendant/water mixtures at 300 K.

	Dow		Acipl	ex	Nafion	
λ	Box length (Å)	ρ (g cm ⁻³)	Box length (Å)	ρ (g cm ⁻³)	Box length (Å)	$\rho (g cm^{-3})$
3	60.550	1.680	66.089	1.736	66.670	1.732
6	64.392	1.563	69.521	1.634	69.904	1.636
9	67.975	1.479	72.502	1.559	72.917	1.565
12	71.003	1.419	75.209	1.497	75.632	1.503
15	74.062	1.370	77.896	1.448	78.290	1.451

Table S3. Box length and density (ρ) obtained from a 10 ns equilibration run for side chain pendant/water mixtures at 350 K.

	Dow		Acipl	ex	Nafion	
λ	Box length (Å)	ρ (g cm ⁻³)	Box length (Å)	ρ (g cm ⁻³)	Box length (Å)	$\rho (g cm^{-3})$
3	61.643	1.590	67.461	1.631	66.841	1.632
6	65.646	1.483	70.682	1.545	71.507	1.550
9	69.003	1.407	73.865	1.468	74.208	1.479
12	72.373	1.353	76.952	1.408	76.914	1.424
15	75.181	1.309	79.173	1.376	79.667	1.380

SSC	Temperature (K)	$D_A (\times 10^{-5} \text{ cm}^2 \text{ sec}^{-1})$					
pendant		λ=3	λ=6	λ=9	λ=12	λ=15	
Dow	300	0.0323	0.1303	0.2401	0.3570	0.4599	
	320	0.0590	0.2632	0.4880	0.5764	0.6811	
	335	0.1124	0.3265	0.5861	0.8042	1.0104	
	350	0.1568	0.5141	0.8326	1.1348	1.1939	
A * 1	300	0.0175	0.0979	0.1824	0.2858	0.3193	
	320	0.0339	0.1699	0.3196	0.4579	0.5662	
Acipiex	335	0.0548	0.2302	0.4456	0.6083	0.7930	
	350	0.0988	0.3457	0.6385	0.8899	0.9414	
Nafion	300	0.0180	0.0751	0.1430	0.2193	0.2275	
	320	0.0361	0.1286	0.2470	0.3110	0.4674	
	335	0.0537	0.2054	0.3720	0.4706	0.5298	
	350	0.0774	0.2812	0.4665	0.5820	0.7540	

Table S4. Diffusion coefficients (D_A) of hydronium ions in side chain pendant/water mixtures obtained from a 20 ns production run.

SSC	Temperature	$D_A (\times 10^{-5} \text{ cm}^2 \text{ sec}^{-1})$					
pendant	(K)	λ=3	λ=6	λ=9	λ=12	λ=15	
Dow	300	0.2097	0.5201	0.8542	1.0739	1.2662	
	320	0.3580	0.8606	1.3120	1.6571	1.9425	
	335	0.5562	1.2149	1.7907	2.2278	2.5225	
	350	0.7354	1.6351	2.2614	2.8246	3.1875	
Aciplex	300	0.1220	0.4545	0.7081	0.9467	1.1004	
	320	0.2319	0.7165	1.1305	1.4255	1.7134	
	335	0.3650	0.9167	1.4267	1.8755	2.2655	
	350	0.5248	1.2890	1.8975	2.4173	2.8161	
Nafion	300	0.1380	0.3978	0.6520	0.9626	1.1158	
	320	0.2392	0.5713	1.0210	1.3198	1.6121	
	335	0.3860	0.8935	1.4253	1.7164	2.0581	
	350	0.5040	1.1295	1.8252	2.2710	2.5097	

Table S5. Diffusion coefficients (D_A) of water in side chain pendant/water mixtures obtained from a 20 ns production run.

Figure S1: Partial charges for a) Dow, b) Aciplex and c) Nafion side chain pendant of PFSA ionomer membrane.

Figure S2: a-c) S-S, d-f) S-O_w and g-i) S-O_h RDFs at 350 K.

Figure S3: a-c) O_h-O_h, d-f) O_h-O_e, g-i) O_e-O_w, j-l) O_h-O_W and m-o) O_w-O_w RDFs at 350 K.

Figure S4. Mean Square Displacement of 1) hydronium ion a-c) at 300 K, d-f) at 350 K and 2) water g-i) at 300 K, j-l) at 350 K.

COMPLETE REFERENCE (50)

(50) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.;Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B. 05; Gaussian, Inc.: Wallingford, CT, 2003.