<SUPPORTING INFORMATION>

Superior Photoelectrodes for Solid-state Dye-sensitized Solar Cells Using Amphiphilic TiO₂

Daesub Hwang^{1,2}, Dong Young Kim¹, Seong Mu Jo¹, Sung-Yeon Jang^{3,*}, and Dongho Kim^{2,*}

¹Optoelectronic Materials Lab, Korea Institute of Science and Technology, Seoul 136-791, Korea

²Department of Chemistry, Yonsei University, Seoul 120-749, Korea

³Department of Chemistry, Kookmin University, Seoul 136-702, Korea

CORRESPONDING AUTHOR FOOTNOTE

E-mail: syjang@koomin.ac.kr, Tel: +82- 2- 910-5768, Fax: +82- 2- 910- 4415

Supporting Information Material

Figure S1. TEM images of amorphous titania prepared by hydrothermal synthesis at (A) 80 $^{\circ}$ C for 16 h and (B) 160 $^{\circ}$ for 48 h.

Figure S2. (A) Schematic illustration of ss-DSSC fabrication. (B) SEM image of TiO_2 -NP-based photoelectrode. (C) SEM image of TiO_2 -NS-based photoelectrode (laminated).

Figure S3. (A) Representative electrical equivalent circuit of DSSCs. (B) Ideal ESI plot of a DSSC with the real parts of the impedances R_0 , R_1 , R_2 , and R_3 .

Figure S4. *J-V* characteristics of the ss-DSSC-P25 under the conditions of simulated global AM 1.5 solar radiation at 100 mW·cm⁻².