Supplementary Information for

Theoretical Design of Highly Active SrTiO₃–based Photocatalysts from Co-doping Scheme toward Solar Energy Utilization for Hydrogen Production

A. Experimental details

1. Sample synthesis

The codoped SrTiO₃ samples were synthesized by a solid-state reaction. The starting materials TiO₂ (99.9%), SrCO₃ (99.9%), Cr₂O₃ (99.9%), La₂O₃ (99.99%), Y₂O₃ (99.9%), Sb₂O₅ (99.9%), Nb₂O₅ (99.9%) were weighed according to the stoichiometric ratio of Sr_{0.95}La_{0.05}Ti_{0.95}Cr_{0.05}O₃, Sr_{0.95}Y_{0.05}Ti_{0.95}Cr_{0.05}O₃, Sr_{1.00}Ti_{0.90}Cr_{0.05}Sb_{0.05}O₃, and Sr_{1.00}Ti_{0.90}Cr_{0.05}Nb_{0.05}O₃, and then ground for 0.5 h in mortar. After that, the mixtures were sintered at 1150 -1200 °C for 24 h. Finally, the sintered products were ground and ready for further characterizations.

2. Experiment details for the photocatalytic activity for H₂ evolution

To load Pt co-catalyst on the codoped SrTiO₃ samples, some amount of H₂PtCl₆ aqueous solution (equaling to 0.5 wt% of catalyst) was mixed with the codoped SrTiO₃ sample and the mixture was ground until becoming dry. Then the mixture was calcined at 400 °C for 2 h. After that, the photocatalytic H₂ evolution was carried out with 0.3 g photocatalyst suspending in 270 ml CH₃OH solution (50 ml CH₃OH and 220 ml H₂O) in a Pyrex glass reaction cell. The reaction cell was connected to a gas-closed system with a gas-circulated pump. A 300-W Xe arc lamp was employed for the light source of photocatalytic reaction. During the visible-light reaction, a L42 cutoff filter was used to remove UV light ($\lambda > 400$ nm). The evolved H₂ was analyzed by an online gas chromatograph (GC-8A; Shimadzu Corp., Japan) equipped with a thermal conductivity detector.

3. Experiment details for the X-ray photoelectron spectroscopy (XPS) and UV-visible absorption spectra measurements.

XPS experiments were performed in type Theta probe (Thermo Fisher) using monochromatized Al K α at h υ = 1486.6 eV. Peak positions were internally referenced to the C_{1s} peak at 284.6 eV. The diffuse reflectance spectra of the samples were recorded on a UVvisible spectrophotometer (UV-2500PC; Shimadzu Corp., Japan) with barium sulfate as the reference. Then the absorption spectra were obtained from the reflectance spectra by means of Kubelka–Munk transformations.

B. Optical absorption of the codoped SrTiO₃ samples

Figure S1 UV-visible absorption spectra of as-prepared samples. All samples showed visible light absorption.

C. The density of states (DOS) obtained by hybrid-density functional calculations

1. Density of states of Cr_{Ti} in the negatively charged state

Figure S2 Spin-polarized total density of states for $SrTiO_3$ 40-atom supercell with a Cr substituted for Ti in the negative charge state. The DOS of supercell with Cr defect is aligned with that of defect-free supercell using the position of Sr 4*s* which is localized in the valence band. The vertical broken lines corresponds to the valence band maximum (VBM) and the conduction band minimum (CBM) of the defect-free supercell. The highest occupied state of the electron is shown as the vertical dotted line.

2. Density of states of the codopant donor-type defect in the positive charged state

Figure S3 Spin-polarized total density of states for $SrTiO_3$ 40-atom supercell with a donor-type codopant defect in the positive charge state. The DOS of supercell with a donor-type codopant defect is aligned with that of defect-free supercell using the position of Sr 4*s* which is localized in the valence band. The top to the bottom panels show the DOS for La_{Sr}, Sb_{Ti}, Y_{Sr}, Nb_{Ti}, Ta_{Ti}, and F_O respectively. The vertical broken lines corresponds to the valence band maximum (VBM) and the conduction band minimum (CBM) of the defect-free supercell. The highest occupied state is at the VBM. This shows that the codopant does not induce any defect levels in the band gap of codoped SrTiO₃.