Supporting Information

Figure S1. N₂ adsorption/desorption isotherms (a) $Li(Mn_{1/3}Ni_{1/3}Fe_{1/3})O_2$ (b) $Li(Mn_{1/3}Ni_{1/3}Fe_{1/3})O_2$ -PPy and (c) $Li(Mn_{1/3}Ni_{1/3}Fe_{1/3})O_2$ -PANI composite materials.

Figure S2. CV curves of (a) $Li(Mn_{1/3}Ni_{1/3}Fe_{1/3})O_2/AC$ (b) $Li(Mn_{1/3}Ni_{1/3}Fe_{1/3})O_2$ -PPy/AC and (c) $Li(Mn_{1/3}Ni_{1/3}Fe_{1/3})O_2$ -PANI/AC cells recorded at different current rates between 0-3 V in the presence of 1 M LiPF₆ in EC:DMC (1:1 v/v.).

Figure S3. Charge discharge curves of (a) $Li(Mn_{1/3}Ni_{1/3}Fe_{1/3})O_2/AC$ (b) $Li(Mn_{1/3}Ni_{1/3}Fe_{1/3})O_2$ -PPy/AC and (c) $Li(Mn_{1/3}Ni_{1/3}Fe_{1/3})O_2$ -PANI/AC cells recorded at 0.72 A g⁻¹ current density between 0-3 V in 1 M LiPF₆/EC:DMC (1:1 v/v.) electrolyte.

Table S1. Comparison of specific power (S_{PD} , W kg⁻¹) and specific energy density (S_{ED} , Wh kg⁻¹) of various non-aqueous Li-ion hybrid supercapacitors with Li-intercalating materials as electrodes at given current density.

Systems	S _{PD} (W kg ⁻¹)	S _{ED} (Wh kg ⁻¹)	Reference
PANI-Li(Mn _{1/3} Ni _{1/3} Fe _{1/3})O ₂ /AC	1000	~49	Present work
LiMn ₂ O ₄ /AC	125	35	[1]
LiTi ₂ (PO ₄) ₃ /AC	180	14	[2]
$Li_4Ti_5O_{12}/poly(methyl) thiophene$	30	10	[3]
LiCoPO ₄ /CNF	192	11	[4]
LiMn ₂ O ₄ /MnO ₂ -CNT	600	42	[5]
$(LiMn_2O_4 + AC)/Li_4Ti_5O_{12}$	~200	16	[6]
$LiTi_2(PO_4)_3/MnO_2$	200	43	[7]
Li ₂ MnSiO ₄ /AC	900	40	[8]
Li ₂ FeSiO ₄ /AC	1000	33	[9]
LiCrTiO ₄ /AC	800	23	[10]
V ₂ O ₅ /CNT	45	18	[11]

References

- 1. Y. G. Wang and Y. Y. Xia, *Electrochem. Commun.* 2005, 7, 1138-1142.
- V. Aravindan, W. Chuiling, M. V. Reddy, G.V.S. Rao, B. V. R. Chowdari and S. Madhavi, *Physical Chemistry Chemical Physics*, 2012, 14, 5808-5814.
- 3. A. D. Pasquier, A. Laforgue and P. Simon, J. Power Sources 2004, 125, 95–102.
- 4. R. Vasanthi, D. Kalpana and N. G. Renganathan, J Solid State Electrochem., 2008, 12, 961-

969.

- S. B. Ma, K. W. Nam, S. B. Yoon, X. Q. Yang, K. Y. Ahn, K. H. Oh and K. B. Kim, Electrochem. Comm. 2007, 9, 2807–2811.
- 6. X. Hua, Z. Denga, J. Suo and Z. Pan, J. Power Sources 2009, 187, 635–639.
- 7. J. Y. Luo, J. L. Liu, P. He and Y. Y. Xia, *Electrochimica Acta* 2008, **53**, 8128–8133.
- K. Karthikeyan, V. Aravindan, S. B. Lee, I. C. Jang, H. H. Lim, G. J. Park, M. Yoshio and Y. S. Lee, *J. Power Sources* 2010, **195**, 3761-3764
- K. Karthikeyan, V. Aravindan, S. B. Lee, I. C. Jang, H. H. Lim, G. J. Park, M. Yoshio and Y. S. Lee, *J. Alloys Compds.*, 2010, **504**, 224-227.
- 10. V. Aravindan, W. Chuiling and S. Madhavi, J. Mater. Chem. 2012, 22, 16026-16031
- V. Aravindan, Y.L. Cheah, G. Wee, B.V.R. Chowdari and S. Madhavi, *ChemPlusChem* 2012, 77, 570-575