Electronic Supplementary Information

Designed Synthesis of LiMn₂O₄ Microspheres with Adjustable Hollow Structures for Lithium-Ion Battery Applications

Liang Zhou,^{a,b} Xufeng Zhou,^c Xiaodan Huang,^a Zhaoping Liu,^c Dongyuan Zhao,^a Xiangdong Yao*^d and Chengzhong Yu*^b

^a Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China.

^b Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. Fax: 61-7-33463973; Tel: 61-7-33463283; E-mail: c.yu@uq.edu.au

^c Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.

^d Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia. E-mail: x.yao@griffith.edu.au

Figure S1. XRD pattern (a), SEM images (b, c), and TGA curve (d) of MnCO₃ microspheres.

Figure S2. TEM images of MnCO₃ microspheres.

Figure S3. XRD pattern (a), SEM images (b, c), N₂ adsorption-desorption isotherm and pore size distribution (d) of porous MnO₂ microspheres treated after Step A1.

Figure S4. TEM image (a), N_2 adsorption-desorption isotherm and pore size distribution (b)

of the MnO₂ hollow microspheres treated after Step B2.

Figure S5. SEM image of LiMn₂O₄-A. A broken hollow microsphere is indicated by the

black arrow.

Figure S6. SEM image of $LiMn_2O_4$ -B. A double-shelled hollow microsphere is indicated by

the black arrow.

Figure S7. XRD patterns of MnO_2 and $LiOH \cdot H_2O$ mixtures prepared by the impregnation method (mixture-I) and the ground method (mixture-G).

Figure S8. TGA curves of MnO_2 and $LiOH \cdot H_2O$ mixtures prepared by the impregnation method (mixture-I) and the ground method (mixture-G).

Figure S9. XRD patterns and digital photos of LiMn₂O₄-I and LiMn₂O₄-G prepared by calcination of mixture-I and mixture-G at 600 °C for 10 hours respectively.

Figure S10. SEM (a) and TEM (b) images of $LiMn_2O_4$ -G.