Supporting Information

A new strategy for the surface-free-energy-distribution induced

selective growth and controlled formation of Cu₂O-Au hierarchical

heterostructures with a series of mophological evolutions.

Han Zhu^b, MingLiang Du^{*a,b}, DongLiang Yu^b, Yin Wang^c, LiNa Wang^a, MeiLing Zou^b, Ming Zhang^{a,b}, YaQin Fu^{a,b}

^a Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Ministry of Education, Hangzhou 310018, P. R. China; Tel: 86-571-86843255; E-mail: du@zstu.edu.cn

^b Department of Materials Engineering, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China

^c MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

Scheme S1 Schematic illustration of the procedure used to synthesize (part A and B) Cu_2O crystals, (part C) Cu_2O -Au hierarchical heterostructures and (part D) Cu_2O -PVP-Au heterostructures.

Products	0.1 M	1.0 M	1 M	0.2	H_2O	5	Aging
	CuCl ₂	NaOH	N_2H_4	M	(m L)	тM	time
	(mL)	(mL)	(µL)	PVP		HAu	(min)
						Cl ₄	
						(aq)	
a. cubic octahedral			10				
ctahedron			40				
b. octahedron			80				
d. octahedron			120				10
e. corrosive-octahedron			200				
f. face-holed octahedron			300				
g. cubic octahedral							10
h. octahedron			10		27		30
i. octahedron	1	1					60
j. Au nanoclusters growth along			120			0.25	
the crystal edges of octahedron							
k. Au nanoclusters growth on			120			0.5	
the crystal faces of octahedron							
l. Cu ₂ O-Au nanostructures			120			0.75	180
m. Au nanowhiskers						1	
n. Cu ₂ O-Au heterostructures			120			0.25	
o. Cu ₂ O-Au heterostructures			120	3		0.5	
p. Cu ₂ O-Au heterostructures			120			0.75	
q. Cu ₂ O-Au heterostructures			120			1	

Table S1 Different products and their amount of all chemicals.

Fig. S1 FE-SEM and TEM images of Cu_2O nanocrystal evolution from cubic octahedral to octahedron with 10 μ L of hydrazine hydrate. The reaction times of each sample are 5 min (a), 20 min (b) and 60 min (c), respectively.

Three main reasons can accounts for these phenomena. 1. The cuboctahedral and octahedral Cu₂O bound by {111} and {100} facets were formed owing to the different growth rates along <100> versus <111> directions. A strong reductant such as $N_2H_4 \cdot 2H_2O$ is helpful to the growth of Cu₂O {111} planes, while the weaker reductant such as sodium ascorbate is adopted, the Cu₂O become cubes with six {100} facets. 2. At the same reaction time, the more $N_2H_4 \cdot 2H_2O$ adopted, the more growth rates of {111} facet acquired, resulting the evolution from cuboctahedron to octahedron. 3 As the reaction progress, the N_2H_4 can absorb on {100} planes of cuboctahedrons and suppress the growth of {100} planes, resulting the formation of octahedrons.

Fig. S2 TEM image of the AuNGs comprised by several small Au nanoparticles.

Figure S3. The average particle size of the AuNGs.

Image-Pro Plus 6.2 software was used to obtain the size distributions diagrams of AuNGs and the number of AuNGs is 400.

Fig. S4 TEM image of the Cu₂O-Au heterostructures with pores and splits.

Image-Pro Plus 6.2 software was used to obtain the size distributions diagrams of AuNWs and the number of AuNWs is 400.

Fig. S6 FE-SEM images Cu₂O-PVP-Au heterostructures. (0.5 mL HAuCl₄)

Due to the decreasing of diversity of the surface energy distribution between {111} facets and crystal edges with the introduction of PVP, the trend of the selective growth on the crystal edges is significantly drop down.

Fig. S7 The Cu LMM Auger peaks of (a) Cu₂O octahedrons and (b) Cu₂O-Au heterostructures.

Fig. S8 UV-Vis absorption spectra of methyl orange as a function of irradiation time using (a) Cu_2O octahedrons, (b) Cu_2O decorated by 0.25 mL HAuCl₄, (c) Cu_2O decorated by 0.5 mL HAuCl₄, (d) Cu_2O decorated by 0.75 mL HAuCl₄, (e) Cu_2O decorated by 1 mL HAuCl₄.