Supporting Information:

Removal of Multifold Heavy Metal Contaminations in Drinking Water by Porous Magnetic Fe₂O₃@AlOOH Superstructure

Xiulin Yang,^{ab} Xueyun Wang,^{ab} Yongqiang Feng,^{ab} Guoqiang Zhang,^{ab} Taishan Wang,^a Weiguo Song,^a Chunying Shu,^a Li Jiang^a* and Chunru Wang^a*

^aBeijing National Laboratory for Molecular Sciences; Key Lab of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; ^bGraduate School of Chinese Academy of Sciences, Beijing, 100039, China

Experimental Section

Materials: All chemical reagents used in this experiment were of analytical grade. $Pb(NO_3)_2$, $Na_2HAsO_4\cdot7H_2O$, $K_2Cr_2O_7$, $FeSO_4\cdot7H_2O$, $Mg(CH_3COO)_2\cdot4H_2O$, Na_2CO_3 , $Al(NO_3)_3\cdot9H_2O$, HCl, NaOH, ethanol and ethylene glycol were procured commercially and were used as received without further purification.

Synthesis of urchin-like hierarchical Fe_2O_3 @AlO(OH): The urchin-like hierarchical γ -FeOOH was fabricated using one-pot solvothermal method. Specifically, 0.5561 g of FeSO₄·7H₂O and 0.4289 g of Mg(CH₃COO)₂·4H₂O were dissolved in Milli-Q water (100 mL) under vigorous stirring for 30 min at room temperature. And then, the solution was heated to 90 °C with continuously stirred for additional 1 h in round bottom flask (250 mL). After that, the mixture was filtered through a PTFE membrane (pore size: 0.22 μ m), and washed with double-distilled water and ethanol several times. The obtained products were dried in a vacuum oven at 70 °C for 12 h. In order to prepare porous magnetic α , γ -Fe₂O₃, the vacuum-dried powders were calcined at 350 °C for 4 h using a ramp rate of 5 °C ·min⁻¹ in the flow of nitrogen (purity: \geq 99.99%).

The γ -AlO(OH)-coated α , γ -Fe₂O₃ were prepared by *in situ* chemical precipitation method in accordance with the following procedure. The obtained α , γ -Fe₂O₃ (100 mg) and Al(NO₃)₃·9H₂O (360.7 mg) were dispersed in 120 mL ethylene glycol-H₂O (v/v = 1:5) through an ultrasonic treatment process for 30 min. Subsequently, 244.6 mg Na₂CO₃ dissolved in 20 mL deionized water was added to the fully dispersed solution with ultrasonic vibrations for another 30 min. The mixture was then vigorous stirred for 5 h at room temperature. Final products were collected by a PTFE membrane, washing with deionized water and ethanol for several times to remove any possible ionic remnants, followed by drying overnight in a vacuum oven at 70 °C. The γ -AlO(OH) was also prepared according to the same procedure but without α , γ -Fe₂O₃ added. All chemical reagents used in this study were analytical grade and were used without further purification.

Synthesis of FeOOH using K_2CO_3 as alkaline source: 0.5561 g of FeSO₄·7H₂O and 0.2120 g of Na₂CO₃ were dissolved in Milli-Q water (100 mL) under vigorous stirring for 30 min at room temperature. And then, the solution was heated to 90 °C with continuously stirred for additional 1 h in round bottom flask (250 mL). After that, the mixture was filtered through a PTFE membrane (pore size: 0.22 μ m), and washed with double-distilled water and ethanol several times. The obtained products were dried in a vacuum oven at 70 °C for 12 h.

Toxic heavy metal ions removal: The solution containing different concentrations of Pb(II), As(V) and Cr(VI) with 10, 20, 50, 100 and 200 mg·L⁻¹ were prepared using Pb(NO₃)₂, Na₂HAsO₄·7H₂O and K₂Cr₂O₇ as the sources of heavy metal ions, respectively. The pH value of the Na₂HAsO₄ and K₂Cr₂O₇ solutions was adjusted to 4 with hydrochloric acid (0.2 M) prior to the adsorption experiments to ensure species of As(V) and Cr (VI) as negative charged anions. The time-dependant curves were preformed with the initial ion concentration for 10 mg·L⁻¹ and sample dose for 20 mg/100 mL. At predetermined time intervals, 5 mL supernatant solutions were pipetted and filtered through 0.22 μ m PTFE membranes. For the adsorption isotherms, 5 mg of the urchin-like Fe₂O₃@AlO(OH) was added to 25 mL of the above solution under stirring at room temperature. After 12 h, the samples were separated through 0.22 μ m PTFE membrane and analyzed by inductively coupled plasma-optical emission spectroscopy (Shimazu ICPE-9000) to measure the concentration of metal ions in the remaining solution. The adsorption capacity of the adsorbents was calculated according to the following equation (1):¹

$$q_e = \frac{(C_0 - C_e)V}{m} \tag{1}$$

where C_0 and C_e represent the initial and equilibrium concentrations (mg·L⁻¹), respectively. *V* is the volume of the solution (mL), and m is the amount of adsorbent (mg).

Characterization: The morphology and microstructures of the samples were characterized by field emission scanning electron microscopy (FE-SEM, JEOL 6701F), transmission electron microscopy (TEM, JEOL 2010). X-ray diffraction (XRD) patterns were preformed on a Rigaku D/max-2500 diffractometer with Cu K α radiation ($\lambda = 1.5418$ Å) at 40 kV and 30 mA. XPS data were obtained with an ESCALab220i-XL electron spectrometer from VG Scientific using 300W Al K α radiation. Fourier transform infrared spectrometry (FT-IR, Thermo Fisher Scientific) was employed to analyze the surface chemical composition. Thermal gravity measurement was made on a TGA/STA409 PC module with a rising temperature rate of 10 °C min⁻¹ from 50 to 1000 °C under continuous N₂ flow. ²⁷Al solid-state NMR spectra were recorded at 104.2 MHz with a pulse width of 0.33 μ s on a Bruker Avance 400 solid-state

spectrometer by using an aluminum sulfate liquid solution as a reference. The specific surface areas of the as-prepared products were measured on a Quantachrome Autosorb AS-1 instrument, and the pore size distributions were derived from the desorption branches of the isotherm with the Barrett-Joyner-Halenda (BJH) model. The magnetic properties of the magnetic nanocomposites were investigated using a vibrating sample magnetometer with an applied field of between -10000 and 10000 Oe at room temperature. pH value was measured using pH meter (Thermo Scientific, Model: 410p-13).

γ-FeOOH

 α, γ - Fe₂O₃

 $Fe_2O_3@AlO(OH)$

Fig. S1 TEM image (left) and XRD result (right) of FeOOH prepared by Na₂CO₃ as alkaline source.

Fig. S2 TG and DTG curves of γ-AlO(OH).

Fig. S2 shows the TG-DTG profiles of the synthesized γ -AlO(OH). The weight loss between 30 and 120 °C in the TG curve, accompanied with an endothermic peak around 120 °C, could be attributed to the loss of surface adsorbed water.² The weight loss between 120 and 418 °C on the TG curve, accompanied with a strong exothermic peak around 333 °C, is mainly due to the γ -AlO(OH) tardily decomposed to γ -Al₂O₃. The mass loss of the γ -AlO(OH) at 120-418 °C of ca. 17.7 % is due to the removal of structural water and the surface –OH groups from γ -AlO(OH), which is higher than that of the theoretical value of 15% on going from γ -AlO(OH) to γ -Al₂O₃.³ A sharp exothermic peak appears on the DTG curve of around 450 °C may be caused by the decomposition of carbonate ions adsorbed on the surface of γ -AlO(OH), whose existence has been confirmed by XPS and FT-IR spectroscopy.

Fig. S3 ²⁷Al MAS NMR spectra of prepared γ -AlO(OH).

Solid-state ²⁷Al MAS NMR spectra of the pure AlO(OH) s shown in Fig. S3, which has been used extensively to study the properties of glasses, zeolites, ceramics and cements, etc.⁴ Under certain conditions, solid-state NMR spectra can yield valuable information about chemical bonding and molecular structure that may be unavailable from solution NMR spectroscopy. The spectrum from the sample shows a single peak at 7.549 ppm, corresponding to boehmite γ -AlO(OH), which has been widely reported possessing a signal with chemical shift in the range 4~9 ppm.⁵ Meanwhile, It has been clearly confirmed that boehmite γ -AlO(OH) contains only octahedrally coordinated aluminium.⁶

Fig. S4. Adsorption efficiencies of As(V) by $Fe_2O_3@AlO(OH)$ as a function of pH. Experiments were conducted at pH 3~10, with 5 mg samples stirring for 12 h. Initial arsenic concentration: 5 mg·L⁻¹, sample volume: 25 mL.

Fig. S5 Adsorption kinetics based on the pseudo-first-order kinetic model on the adsorption of Pb(II), As(V) and Cr(VI) ions onto the Fe₂O₃@AlO(OH), the initial ion concentration is 10 mg·L⁻¹ and sample dose is 20 mg/100 mL.

Fig. S6 Different samples as sorbents for Pb(II), As(V) and Cr(VI) ions removal.

Table S1 Summary	of As	s(V), Cr(VI) and	Pb(II)	maximum	adsorption	capacities	(q _m) on
various adsorbents.									

Carl and a	As(V): q_m	$Cr(VI): q_m$	Pb(II): q_m	\mathbf{BET}
Sorbents	(mg.g)	(mg.g)	(mg.g)	(m .g)
Fe ₂ O ₃ @Al(OH)CO ₃ (this study)	75.3	41.3	89.2	320.8
Urchin-like α -FeOOH hollow spheres ⁷	58		80	96.9
Chrysanthemum-likeα-FeOOH ⁸	66.2		103	120.8
Ceria Hollow Nanospheres ⁹	22.4	15.4	9.2	72
3D Flowerlike Fe ₂ O ₃ Nanostructures ¹⁰	7.6	5.4		40
Flowerlike α -Fe ₂ O ₃ ¹¹	51	30		130
Mesoporous Zr-Ti Oxide ¹²		29.46		413
Mesoporous Titania Beads ¹³		11.5		144
Fe@Fe ₂ O ₃ Core-Shell Nanowires ¹⁴		7.78		31.1
hierarchicalSiO ₂ @γ-AlOOH spheres		~4.5		139.5
γ-AlOOH(Boehmite)@SiO ₂ /Fe ₃ O ₄ ¹⁵			214.59	28.6

Reference

- X.-Y. Yu, R.-X. Xu, C. Gao, T. Luo, Y. Jia, J.-H. Liu and X.-J. Huang, ACS Appl. Mat. Interfaces, 2012, 4, 1954; V. Rocher, J.-M. Siaugue, V. Cabuil and A. Bee, Water Res., 2008, 42, 1290.
- 2 Y. Zhu, H. Hou, G. Tang and Q. Hu, *Eur. J. Inorg. Chem.*, **2010**, 2010, 872.
- 3 L. Zhang, X. Jiao, D. Chen and M. Jiao, *Eur. J. Inorg. Chem.*, 2011, 2011, 5258.
- 4 J. Ashenhurst, G. Wu and S. Wang, J. Am. Chem. Soc., 2000, 122, 2541.
- 5 L. A. O'Dell, S. L. P. Savin, A. V. Chadwick and M. E. Smith, Solid State Nucl. Magn. Reson., 2007, 31, 169.
- 6 E. W. Hagaman, J. Jiao, B. Chen, Z. Ma, H. Yin and S. Dai, *Solid State Nucl. Magn. Reson.*, 2010, 37, 82.
- 7 B. Wang, H. Wu, L. Yu, R. Xu, T. T. Lim and X. W. Lou, Adv. Mater., 2012, 24, 1111.
- 8 H. Li, W. Li, Y. Zhang, T. Wang, B. Wang, W. Xu, L. Jiang, W. Song, C. Shu and C. Wang, J. Mater. Chem., 2011.
- 9 C.-Y. Cao, Z.-M. Cui, C.-Q. Chen, W.-G. Song and W. Cai, J. Phys. Chem. C, 2010, 114, 9865.
- 10 L. S. Zhong, J. S. Hu, H. P. Liang, A. M. Cao, W. G. Song and L. J. Wan, Adv. Mater., 2006, 18, 2426.
- 11 C.-Y. Cao, J. Qu, W.-S. Yan, J.-F. Zhu, Z.-Y. Wu and W.-G. Song, *Langmuir*, **2012**, *28*, 4573.
- 12 D. Chen, L. Cao, T. L. Hanley and R. A. Caruso, *Adv. Funct. Mater.*, **2012**, *22*, 1966.
- 13 N. Wu, H. Wei and L. Zhang, Environ. Sci. Technol., 2011, 46, 419.
- 14 Z. Ai, Y. Cheng, L. Zhang and J. Qiu, *Environ. Sci. Technol.*, 2008, 42, 6955.
- 15 Y.-X. Zhang, X.-Y. Yu, Z. Jin, Y. Jia, W.-H. Xu, T. Luo, B.-J. Zhu, J.-H. Liu and X.-J. Huang, *J. Mater. Chem.*, **2011**, *21*, 16550.