Supporting Information

CTAB-assisted synthesis of single-layer MoS₂/graphene composites as anode materials of Li-ion battery

Zhen Wang,^a Tao Chen,^a Weixiang Chen,^{*a} Kun Chang,^a Lin Ma,^a Guochuang Huang,^a Dongyun Chen^b and Jim Yang Lee^b

a. Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China.

b. Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore.

Fig. S1 XRD patterns of (a) as-prepared MoS₂, (b) as-prepared SL-MoS₂/GNS02 and (c) as-prepared SL-MoS₂/GNS05 composite precursors.

Fig. S1 shows the XRD patterns of the as-prepared MoS₂ and as-prepared SL-MoS₂/GNS composite precursors before annealing. All the samples hardly reveal the characteristic peaks corresponding to layered MoS₂ crystal. This fact indicates that crystalline of MoS₂ is too poor to reflect its XRD peaks before annealing. As shown in Fig. S1c, the as-prepared SL-MoS₂/GNS05 composite precursor displays several small and sharp peaks (marked by *), which are related to being included of surfactant

ion CTA⁺ into the composite precursor. The fact agrees with that reported by Bezverkhyy.¹ In order to confirm the reduction of MoS_4^{2-} to MoS_2 , the element composition of the as-prepared samples were characterized by EDX. Repeat EDX analysis revealed that the atomic ratio of Mo to S is close to the stoichiometry of MoS_2 , confirming that MoS_4^{2-} has been reduced to MoS_2 . It was reported that the strong reduction character of hydrazine can make MoS_4^{2-} reduced to MoS_2 during refluxing according the overall reaction:²

$$2MoS_4^{2-}+N_2H_4 = 2MoS_2 + N_2 + S^{2-} + H_2S$$

While GOS was in-situ reduced to GNS by hydrazine solution under refluxing at 95 °C.

MoS₂ and SL-MoS₂/GNS composites were characterized by TGA as shown in Fig. S2. Fig. S2 shows that MoS₂ starts to lose weight at approximately 430 °C due to the oxidation of MoS₂ to MoO₃. The SL-MoS₂/GNS composites exhibit two weight losses. The first one appears at approximately 270 °C, which can probably be attributed to the removal of oxygen-containing groups. The second is only one large continuous weight loss in the range of approximately 365-550 °C. This thermal behavior might be caused by the decomposition of the amorphous carbon and graphene, and oxidation of MoS₂ in the composites. It is very difficult to distinguish the content of graphene from the TGA curves of SL-MoS₂/GNS composites due to the presence of amorphous carbon. In order to calculate the content of graphene in the SL-MoS₂/GNS composites, the MoS₂/GNS (1:2) composite was prepared by the same process without CTAB and characterized by TGA as shown in Fig. S2b. Fig. S2a shows that the pure MoS₂ has an overall weight loss of 91.1%, which well agrees with

the theoretic value (89.9%) of the oxidization reaction of MoS_2 to MoO_3 . It was reported that the amorphous carbon and graphene were completely oxidized under 700 °C in air, thus the remaining product of the MoS_2/GNS composites under 700 °C was only MoO_3 .³⁻⁵ According to Fig. S2b, the content of MoS_2 in the MoS_2/GNS (1:2) composites was calculated to be about 83.66% and the content of graphene was 16.33%. Because the three composites have the same molar ratio of MoS_2 to graphene, we can estimate the contents of MoS_2 , graphene and amorphous carbon in the SL-MoS₂/GNS composites and the results are summarized in Table S1. In addition, according the elemental compositions of the samples examined by EDX, we can directly calculate the content of MoS_2 in the composites (see Table 1), which matches well with the results of the TGA analysis.

Fig. S2 TGA curves of (a) MoS_2 , (b) MoS_2/GNS (1:2), (c) SL-MoS₂/GNS02 and (d) SL-MoS₂/GNS05 composites measured at a heating rate of 10 °C min⁻¹ in a flowing air.

Samples	$MoS_2/wt\%$	Graphene /wt%	Amorphous carbon /wt%
MoS_2	100	_	
$MoS_2/GNS(1:2)$	83.66	16.33	
SL-MoS ₂ /GNS02	63.12	12.32	24.56
SL-MoS ₂ /GNS05	56.94	11.12	31.94

Table 1.	. The con	npositions	of the	samples	calculated	from the	TGA
----------	-----------	------------	--------	---------	------------	----------	-----

Fig. S3 TEM and RTEM images of (a, b) as-prepared SL-MoS₂/GNS02 and (c, d) as-prepared SL-MoS₂/GNS05 composites.

The TEM and HRTEM images of the SL-MoS₂/GNS products before heat-treatment were carried out as shown in Fig. S3. From the HRTEM images, it can be seen that the very short MoS_2 fringes with poor-crystalline are highly dispersed in the composites. Due to the very short fringes and extremely poor-crystalline of MoS_2 , the XRD patterns of the as-prepared SL-MoS₂/GNS composite precursors before heat treatment hardly display the characteristic peaks of MoS_2 crystal as shown in Fig. S1.

Refernces

- I. Bezverkhyy, P. Afanasiev and M. Lacroix, *Materials Research Bulletin*, 2002, 37, 161-168.
- P. Afanasiev, G.-F. Xia, G. Berhault, B. Jouguet and M. Lacroix, *Chemistry of Materials*, 1999, **11**, 3216-3219.
- S. J. Ding, J. S. Chen and X. W. Lou, *Chemistry-a European Journal*, 2011, 17, 13142-13145.
- G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu and J. Yao, *The Journal of Physical Chemistry C*, 2008, **112**, 8192-8195.
- C. F. Zhang, Z. Y. Wang, Z. P. Guo and X. W. Lou, ACS Appl. Mater. Interfaces, 2012, 4, 3765-3768.