Electronic Supplementary Information for:

Conformational effect of symmetrical squaraine dyes on the performance of dye-sensitized solar cells

Takeshi Maeda,*^a Shohei Mineta, ^a Hideki Fujiwara,^b Hidekazu Nakao,^a Shigeyuki Yagi,^a

Hiroyuki Nakazumi*^a

^a Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture

University, Naka-ku, Sakai 599-8531, Japan

^b Department of Chemistry, Graduate School of Science, Osaka Prefecture University,

Naka-ku, Sakai 599-8531, Japan

E-mail: tmaeda@chem.osakafu-u.ac.jp, nakazumi@chem.osakafu-u.ac.jp

Table of Contents

1. X-ray Structure Determination	S1
2. DFT calculations of SQM1a-b and MSQ	S3
3. Absorption spectra of SQM1a-b immobilized on TiO ₂	S4
4. NMR and MS spectra	S5
References	

1. X-ray structure determination

Crystallographic data for **SQM1a**: C₃₉H₄₀N₄O₆, A black prism crystal having crystal dimensions of $0.15 \times 0.10 \times 0.08 \text{ mm}^3$, M = 660.77, triclinic, a = 10.684(8), b = 13.943(9), c = 15.095(11) Å, α = 105.332(9)°, β = 110.321(6)°, γ = 93.504(11)°, V = 2004(2) Å³, space group P-1, Z = 2, $\rho = 1.095$ g cm⁻³, μ (Mo-K α) = 0.744 cm⁻¹, F(000) = 700.0. Reflection data ($2\theta < 62.1^{\circ}$) were collected on a Rigaku Mercury CCD area detecter at 296 K with a graphite monochromated Mo-K α radiation ($\lambda = 0.71070$ Å). Of the 18394 reflections that were collected, 10774 were unique ($R_{int} = 0.046$); equivalent reflections were merged. A numerical absorption correction was applied which resulted in transmission factors ranging from 0.989 to 0.994. Lorentz and polarization corrections were applied. The structure was solved by a direct methods using the SIR92 program,¹ expanded using the DIRDIF99 program.² The final cycle of full-matrix least-squares refinement on F was based on 3587 observed reflections ($I > 1.50\sigma(I)$) and 480 variable parameters and converged to $R_1 = 0.1127$, $wR_2 = 0.0980$ and GOF = 1.202. One oxygen atom (O6) was found from the Fourier synthesis and may correspond to a water molecule from the solvent or environment used in the preparation of single crystals. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. All the calculations were performed using the CrystalStructure 3.8 software package of the Molecular Structure Corporation.³ Full crystallographic details excluding structure factors have been deposited at the Cambridge Crystallographic Data Centre (CCDC). CCDC-901550 contains the supplementary crystallographic data for this paper. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Fig. S1 An ORTEP drawing of SQM1a. Thermal ellipsoids are set at the 50% probability level.

2. DFT Calculationd of SQM1a-b and MSQ

The ground-state geometries of **SQM1a-b** and **MSQ** were optimized in the gas phase by DFT calculations with the Gaussian 09 program (**Fig. 6**).⁴ The calculations were performed on the models in which the butyl substituents have been replaced by methyl groups with the B3LYP exchange-correlation functional under a 6-31G(d) basis set. The time-dependent DFT (TD-DFT) calculations were performed to calculate the compositions in terms of molecular orbital contributions based on their corresponding optimized geometries calculated at theB3LYP/6-31G(d) level. In TDDFT calculations, the lowest 4 singlet-singlet excitations were calculated (**Table S1**). The calculation for **MSQ** showed only a transition with higher ocillator strength (f = 1.5) characterized to HOMO-LUMO excitation.

0//			
Dye	<i>E</i> (eV)	f	Composition ^b
SQM1a	1.83	0.56	$H-1 \to L (16\%), H \to L (69\%)$
	2.79	1.06	$H-1 \rightarrow L (69\%)$
SQM1b	1.88	0.55	$H-1 \rightarrow L (17\%), H \rightarrow L (69\%)$
	2.83	0.99	$H-1 \rightarrow L (68\%)$
MSQ	2.27	1.47	$H \rightarrow L (71\%)$

Table S1. Calculated lowest exited energies (E), oscillator strengths (f), and composition in terms of molecular orbital contributions.

^{*a*} *n* is the ordering number of the calculated excited state. ^{*b*} H = HOMO, L = LUMO

3. Absroption spectra of SQM1a-b immobilized on TiO₂

Absorption spectra of the dyes imobilized on TiO_2 were measured using TiO_2 thin films (5 μ m-thickness) prepared from a nanocrystalline TiO_2 paste (PST-18NR) (**Fig. S2**). The TiO_2 films were immersed in the dye bath including dyes (0.12 mM) and chenodeoxycholic acid (6.0 mM) in *t*-BuOH/acetonitril (1/1 (v/v)) and then kept for given time at room temperature. The resulting films were washed with acetonitrile to remove non-adsorbed dyes.

Fig. S2 Absorption spectra of **SQM1a** (A) and **SQM1b** (B) immobilized on TiO_2 (5 μ m-thickness) with the change of immersion time.

4. NMR and MS Spectra

Fig. S3 ¹H-NMR (400 MHz, 25 °C) spectrum (A), and ¹³C-NMR (400 MHz, 25 °C) spectrum (B) of **SQM1a** in CDCl₃-CD₃OD (16/1(v/v)).

Fig. S4 ¹H-NMR [400 MHz, 25 °C, CDCl₃] spectrum (A) and ¹³C-NMR [400 MHz, 25 °C, CDCl₃-CD₃OD (16/1(v/v))] spectrum (B) of **SQM1b**.

Fig. S5 ¹H-NMR [400 MHz, 25 °C, DMSO- d_6] spectrum (A) and ¹³C-NMR [400 MHz, 25 °C, CDCl₃-CD₃OD (16/1(v/v))] spectrum (B) of **MSQ**.

Fig. S6 ESI-Mass spectra of SQM1a (A), SQM1b (B), and MSQ (C).

References

- (1) Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M.; Polidori, G.; Camalli, M. SIR92 the program. Journal of Applied Crystallography **1994**, *27*, 435.
- (2) Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smith, J. M. M. The DIRDIF-99 Program system; Technical Report of Crystallography Laboratory, University of Nijimegen, The Netherlands, **1999**.
- (3) Crystal Structure 3.8: Crystal Structure Analysis Package, Rigaku and Rigaku Americas, 9009 New Trails Dr., The Woodlands, TX 77381, USA, 2000-2007.
- (4) Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.