Supporting information

Highly efficient *iso*-quinoline cationic organic dyes without vinyl group for Dye-sensitized solar cells

Jianghua Zhao, ^a Xichuan Yang, ^{* a} Ming Cheng, ^a Shifeng Li, ^a Xiuna Wang, ^a and Licheng Sun^{* a, b}

General synthetic routes

Scheme 1 Synthetic routes of the electron donors and π -conjugated moieties

Scheme 2 Synthetic routes of the sensitizers JH301 - JH304

(a) 1–bromobutane, KOH, EtOH, reflux, 5 h; (b) KI, CH₃OH, H₂SO₄, H₂O₂, 60 °C, overnight; 2 h; (c) aniline, 1,10–phenanthroline, CuI, KOH, toluene, reflux, 24 h; (d) NBS, CCl₄, room temperature, 3 h; (e) *n*-BuLi, THF, – 78 °C, pinacolato boronate, 2 h; (f) *n*-BuLi, THF, – 78 °C, B(OCH₃)₃, 2 h; (g) K₂CO₃, Pd(pph₃)₄, THF/H₂O, reflux, 12 h; (h) NBS, THF, 0 °C, 3 h; (i) BrCH₂COOEt, acetonitrile, reflux, 12 h; (j) LiOH·H₂O, EtOH /H₂O, room temperature, 24 h.

General procedure for the preparation of pinacolato boronate and boric acid (5, 9, 12, 15, 17, 25, 26, 27, 28) for Suzuki coupling

To a solution of thiophene or halogenated compound (1 equivalent) in dry THF under N₂, 2.5 M *n*-BuLi (1.2 equivalent) was dropwised at -78 °C, the resulting mixture was stirred for 2 h at -78 °C. Then isopropyl

pinacolato boronate (1.2 equivalent) or trimethyl borate was added. The mixture was warmed to room temperature naturally and kept for 12 h. The reaction was poured into water and extracted by CH_2Cl_2 . The combined extracts were dried over anhydrous MgSO₄ and the solvent was removed by rotary evaporation. The crude product was purified by silica gel column chromatography and dried in vacuum.

General procedure of the Suzuki reaction

Halogenated compound (1 equivalent), pinacolato boronate or boracic acid (1.2 equivalent), K_2CO_3 (1.5 equivalent), $Pd(PPh_3)_4$ (10 mg/mmol) were dissolved in THF/H₂O (5 : 1, v/v) under N₂. The mixture was refluxed for 12 h. then the reaction was cooled to the room temperature, water was added and extracted by CH₂Cl₂. The combined organic phase was dried over anhydrous MgSO₄ and the solvent was removed by rotary evaporation. The crude product was purified by silica gel column chromatography and dried in vacuum.

General procedure of the bromination

Reactants (1 equivalent) was dissolved in THF or CCl_4 at 0 °C, NBS (1.02 equivalent) was added for several times. The mixture was stirred for 3 h and then poured into water ,extracted by CH_2Cl_2 , the organic layer was collected and concentrate by rotary evaporation. Crude product was purified by silica gel column chromatography and dried in vacuum.

General procedure of the Ullmann reaction

Aromatic amine (1 equivalent), Halogenated compound (2.5 equivalent), CuI (10%), 1, 10-phenanthroline(10%), KOH(3 equivalent) were dissolved in toluene under N_2 . Then the mixture was refluxed for 24 h. After cooling to room temperature, water was added and the solution was extracted with CH₂Cl₂. the organic phase was dried with anhydrous MgSO₄. After removing the solvent, the residual was purified by silica gel column chromatograph.

Butoxybenzene (1) phenol (15 g, 159.5 mmol) KOH (8.95g, 233 mmol) and bromobutane (43.7 g, 319 mmol) were dissolved in EtOH solution, the mixture were refluxed for 5 h. when the reaction was finished, water was added and extracted by CH₂Cl₂. The concentrate product was purified by silica gel column chromatography and petroleum ether to give Compound 1(20.83 g, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.22 (m, 2H), 6.89 (t, J = 7.8 Hz, 3H), 3.95 (t, J = 6.5 Hz, 2H), 1.78 – 1.66 (m, 2H), 1.52 – 1.40 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H). [M] ⁺ calcd. For C₁₀H₁₄NO, 150.1045; found, 150.1043.

1-iodo-4-butoxybenzene (2) Coupound **1** (20 g, 133 mmol) and KI (22 g, 133 mmol) were dissolved in the CH₃OH solution containing H₂SO₄ (14.2 ml, 266 mmol) in the room temperature. Then 30% H₂O₂ (30 g, 266 mmol) was added slowly and then the mixture was refluxed for 12 h. After the reaction was completed, the mixture was cooled to room temperature and 2 M Sodium thiosulfate solution was added. After extraction with CH₂Cl₂ and dried by anhydrous MgSO₄. The solvent was evaporated and the crude product was purified by silica gel column chromatography and ethyl acetate/petroleum ether (1 : 20, v/v) to give compound 2 (29 g, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.54 (m, 2H), 6.76 (dd, J = 8.7, 2H), 3.94 (td, 1.7 Hz, 2H), 1.76 – 1.67 (m, 2H), 1.52 – 1.41 (m, 2H), 0.95 (t, 3H). [M] ⁺ calcd. For C₁₀H1₁₃OI, 276.0011; found, 276.0022.

4-butoxy-N-(4-butoxyphenyl)-N-phenylaniline (3) Compound **3** was synthesized according to general procedure of Ullmann reaction, as colorless oil in 63% yield. 1H NMR (400 MHz, CDCl₃) δ 7.26 – 7.07 (m, 2H), 7.06 – 6.96 (m, 5H), 6.90 (dd, J = 15.4, 5.8 Hz, 2H), 6.87 – 6.73 (m, 4H), 3.91 (dt, J = 12.9, 6.3 Hz, 4H), 1.80 – 1.65 (m, 4H), 1.55 – 1.41 (m, 4H), 0.96 (t, J = 7.4 Hz, 6H). [M] ⁺ calcd. For C₂₆H₃₁NO₂, 389.2355; found, 389.2355.

N-(4-bromophenyl)-2-butoxy-N-(4-butoxyphenyl) aniline (4) Compound 4 was synthesized according to general procedure of bromination, as faint yellow oil in 89% yield. 1H NMR (400 MHz, CDCl3) δ 7.20 (t, J = 11.2

Hz, 2H), 6.98 (t, J = 8.7 Hz, 4H), 6.89 (d, J = 7.6 Hz, 2H), 6.79 (d, J = 8.5 Hz, 4H), 3.92 (s, 4H), 1.83 – 1.69 (m, 4H), 1.59 – 1.41 (m, 4H). 0.96 (t, J = 7.4 Hz, 6H).

4-butoxy-N-(4-butoxyphenyl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)aniline (5) Compound **5** was synthesized according general pinacolato boronate procedure, as faint colorless oil in 72% yield. $[M]^+$ calcd. For $C_{32}H_{42}NO_4B$, 515.3207; found, 515.3213.

4-bromo-N-(4-bromophenyl)-N-phenylaniline (6) Compound 6 was synthesized according general procedure of Ullmann reaction, as colorless solid in 71% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.40 (m, 4H), 7.33 (t, J = 7.9 Hz, 2H), 7.15 – 7.10 (m, 1H), 7.11 – 7.05 (m, 2H), 7.01 – 6.94 (m, 4H). [M] ⁺ calcd. For C₂₆H₃₀B_rNO₄, 467.1460; found, 467.1451.

1,3-dibutoxybenzene (7) Resorcinol (10 g, 90.9 mmol) KOH (7.7 g, 136.4 mmol) and bromobutane (49.8 g, 364 mmol) were dissolved in EtOH solution, the mixture were refluxed for 5 h. After the reaction was finished, water was added and extracted by CH₂Cl₂. The concentrate product was purified by silica gel column chromatography and petroleum ether to give Compound **7**(13 g, 65%). ¹H NMR (400 MHz, CDCl3) δ 7.17 – 7.11 (m, 1H), 6.48 (d, J = 2.0 Hz, 1H), 6.46 (d, J = 1.4 Hz, 2H), 3.95 – 3.89 (m, 4H), 1.74 (tt, J = 7.7, 3.8 Hz, 4H), 1.55 – 1.42 (m, 4H), 0.97 (td, J = 7.4, 1.6 Hz, 6H). [M] ⁺ calcd. For C₁₄H₂₂O₂, 222.1620; found, 222.1624.

1-bromo-3,5-dibutoxybenzene (8) Compound **8** was synthesized according to general procedure of bromination, as faint yellow oil in 82% yield . ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 8.7 Hz, 1H), 6.46 (d, J = 2.6 Hz, 1H), 6.35 (dd, J = 8.7, 2.7 Hz, 1H), 3.98 (t, J = 6.4 Hz, 2H), 3.91 (t, J = 6.5 Hz, 2H), 1.85 – 1.67 (m, 4H), 1.57 – 1.41 (m, 4H), 0.97 (td, J = 7.4, 4.2 Hz, 6H). [M] ⁺ calcd. For C₁₄H₂₁O₂Br, 300.0725; found, 300.0729.

(3,5-dibutoxyphenyl)boronic acid (9) Compound 9 was synthesized according to general boric acid procedure, as white solid in 74% yield . $[M]^+$ calcd. For $C_{14}H_{23}O_4B$, 266.1689; found, 266.1700. $[M]^+$ calcd. For $C_{14}H_{23}O_4B$, 266.1689; found, 266.1700.

2',4'-dibutoxy-N-(2',4'-dibutoxy-[1,1'-biphenyl]-4-yl)-N-phenyl-[1,1'-biphenyl]-4-amine (10) Compound **10** was synthesized according to general procedure of the Ullmann reaction, as colorless oil in 79% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 8.3 Hz, 4H), 7.23 (dd, J = 12.8, 6.7 Hz, 4H), 7.21 – 7.16 (m, 2H), 7.13 (d, J = 8.3 Hz, 4H), 6.98 (dd, J = 10.7, 3.7 Hz, 1H), 6.53 (d, J = 9.0 Hz, 4H), 5.98 (s, 2H), 3.96 (dt, J = 10.6, 6.4 Hz, 8H), 1.80 – 1.70 (m, 8H), 1.47 (ddd, J = 29.5, 14.9, 7.4 Hz, 8H), 0.95 (dt, J = 23.4, 7.4 Hz, 12H). [M] ⁺ calcd. For C₄₆H₅₅NO₄, 685.43130; found, 685.4130.

N-(4-bromophenyl)-2',4'-dibutoxy-N-(2',4'-dibutoxy-[1,1'-biphenyl]-4-yl)-[1,1'-biphenyl]-4-amine (11) Compound **11** was synthesized according to general procedure of bromination, as colorless oil in 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.3 Hz, 4H), 7.27 (dd, J = 12.8, 6.7 Hz, 4H), 7.24 – 7.20 (m, 2H), 7.15 (d, J = 8.3 Hz, 4H), 6.58 (d, J = 9.0 Hz, 4H), 3.99 (dt, J = 10.6, 6.4 Hz, 8H), 1.82 – 1.71 (m, 8H), 1.49 (ddd, J = 29.5, 14.9, 7.4 Hz, 8H), 0.98 (dt, J = 23.4, 7.4 Hz, 12H). [M] + calcd. For C₄₆H₅₄NO₄Br, 763.3236; found, 763.3246.

2',4'-dibutoxy-N-(2',4'-dibutoxy-[1,1'-biphenyl]-4-yl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl)-[1,1'-biphenyl]-4-amine (12) Compound 12 was synthesized according to general procedure of pinacolato boronate, as white oil in 48% yield. [M] $^+$ calcd. For C₅₂H₆₆NO₆B, 811.4983; found, 811.5038.

2-bromo-3-hexylthiophene (13) Compound 13 was synthesized according to general procedure of bromination, as white oil in 98% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.18 (d, 1H), 6.80 (d, 1H), 2.57 (t, 2H), 1.60-1.53 (m, 2H), 1.38-1.28 (m, 6H), 0.91 (t, 3H). [M] ⁺ calcd. For C₁₀H₁₆S, 246.0078; found, 246.0076.

2-(4-hexylthiophen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (14) Compound 14 was synthesized according to general procedure of pinacolato boronate, as white oil in 85% yield. [M] $^+$ calcd. For C₁₆H₂₇BO₂S, 294.1825; found, 294.1828.

3,4'-dihexyl-2,2'-bithiophene (15) Compound **15** was synthesized according to general procedure of Suzuki reaction, as white oil in 92% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.12 (d, 1H), 7.03 (s, 1H), 6.89-6.92 (m, 2H),

2.74 (t, 4H), 1.52-1.70 (m, 4H), 1.20-1.35 (m, 12H), 0.84-0.92 (m, 6H). [M] ⁺ calcd. For C₂₀H₃₀S, 334.1789; found, 334.1782.

2-(3,4'-dihexyl-[2,2'-bithiophen]-5-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (16) Compound 16 was synthesized according to general procedure of pinacolato boronate, as yellow oil in 74% yield. [M] $^+$ calcd. For C₂₆H₄₁BO₂S₂, 460.2641; found, 460.2634.

3,3',4''-trihexyl-2,2':5',2''-terthiophene (17) Compound **17** was synthesized according to general procedure of Suzuki reaction, as yellow oil in 84% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.16 (d, 1H), 6.97 (d,1H), 6.93 (s, 1H), 6.93 (d, 1H), 6.90 (d, 1H), 2.75 (t, 6H), 1.74-1.55 (m, 6H), 1.37-1.26 (m,18H), 0.89-0.84 (t, 9H). [M] ⁺ calcd. For C₃₀H₄₄S₃, 500.2605; found, 500.2613.

5''-bromo-3,3',4''-trihexyl-2,2':5',2''-terthiophene (18) Compound **18** was synthesized according to general procedure of bromination, as yellow oil in 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, 1H), 6.93 (s, 1H), 6.90 (d, 1H), 6.86 (s, 1H), 2.73 (t, 6H), 1.67–1.57 (m, 6H), 1.35 – 1.25 (m, 18H), 0.94–0.85 (m, 9H); [M] ⁺ calcd. For C₃₀H₄₃BrS₃, 578.1710; found, 578.1703).

4-butoxy-N-(4-butoxyphenyl)-N-(4-(3-hexylthiophen-2-yl)phenyl)aniline (19) Compound 19 was synthesized according to general procedure of Suzuki reaction, as yellow oil in 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.3 Hz, 1H), 7.21 (d, J = 10.6 Hz, 2H), 7.08 (d, J = 14.9 Hz, 4H), 7.04 – 6.96 (m, 3H), 6.84 (d, J = 8.6 Hz, 4H), 3.97 – 3.88 (m, 4H), 2.72 – 2.52 (m, 2H), 1.76 – 1.67 (m, 4H), 1.58 (m, 2H), 1.53 – 1.41 (m, 4H), 1.27 (dd, J = 17.8, 5.2 Hz, 6H), 0.95 (t, J = 7.4 Hz, 6H), 0.86 – 0.79 (m, 3H). [M] ⁺ calcd. For C₃₆H₄₅NO₂S, 555.3171; found, 555.3162.

2',4'-dibutoxy-N-(2',4'-dibutoxy-[1,1'-biphenyl]-4-yl)-N-(4-(3-hexylthiophen-2-yl)phenyl)-[1,1'-biphenyl]-4-amine (20) Compound **20** was synthesized according to general procedure of Suzuki reaction, as yellow oil in 63% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 8.3 Hz, 1H), 7.41 (d, J = 8.3 Hz, 4H), 7.27 (dd, J = 12.8, 6.7 Hz, 4H), 7.22 – 7.18 (m, 2H), 7.15 (d, J = 8.3 Hz, 4H), 7.04 (d, J = 8.3 Hz, 1H), 6.58 (d, J = 9.0 Hz, 4H), 3.98 (dt, J = 10.6, 6.4 Hz, 8H), 2.66 (t, 2H), 2.14 (s, 2H), 1.82 – 1.72 (m, 8H), 1.58 (m, 2H), 1.47 (ddd, J = 29.5, 14.9, 7.4 Hz, 8H), 1.27 (dd, J = 17.8, 5.2 Hz, 6H), 0.98 (dt, J = 23.4, 7.4 Hz, 12H), 0.88 – 0.80 (t, 3H). [M]⁺ calcd. For C₅₆H₆₉NO₄S, 851.4947; found, 851.4874.

4-butoxy-N-(4-butoxyphenyl)-N-(4-(3',3'',4-trihexyl-[2,2':5',2''-terthiophen]-5-yl)phenyl)aniline (21) Compound **21** was synthesized according to general procedure of Suzuki reaction, as yellow oil in 58% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, *J* = 5.7 Hz, 2H), 7.22 (t, *J* = 5.2 Hz, 1H), 7.07 (t, *J* = 10.1 Hz, 2H), 6.98 (d, *J* = 5.5 Hz, 4H), 6.92 (m, 3H), 6.87 – 6.80 (m, 4H), 3.93 (t, 5H), 2.81 – 2.74 (m, 6H), 1.75 (dd, *J* = 13.8, 6.4 Hz, 4H), 1.64 (m, 6H), 1.29 (m, 22H), 0.98 –0.89 (t, *J* = 7.3 Hz, 15H). [M] ⁺ calcd. For C₅₆H₇₃NO₂S₃,887.4803; found, 887.4785.

2',4'-dibutoxy-N-(2',4'-dibutoxy-[1,1'-biphenyl]-4-yl)-N-(4-(3',3'',4-trihexyl-[2,2':5',2''-terthiophen]-5-yl)**phenyl)-[1,1'-biphenyl]-4-amine (22)** Compound **22** was synthesized according to general procedure of Suzuki reaction, as yellow oil in 61% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.3 Hz, 1H), 7.41 (d, J = 8.3 Hz, 4H), 7.27 (dd, J = 12.8, 6.7 Hz, 4H), 7.21 – 7.16 (m, 2H), 7.12 (d, J = 8.3 Hz, 4H), 7.04 (d, J = 8.3 Hz, 1H), 6.93 (s, 2H), 6.53 (d, J = 9.0 Hz, 4H), 3.96 (dt, J = 10.6, 6.4 Hz, 8H), 2.72 (t, J = 10.6, 6.4 Hz, 6H), 1.80 – 1.70 (m, 8H), 1.57 – 1.26 (m, 34H), 0.95 (m, 21H). [M]⁺ calcd. For C₇₆H₉₇NO₄S₃,1183.658; found,1183.6482.

(5-(4-(bis(4-butoxyphenyl)amino)phenyl)-4-hexylthiophen-2-yl)boronicacid (23) Compound 23 was synthesized according to general procedure of boric acid, as yellow oil in 55% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, J = 10.6 Hz, 2H), 7.11 (d, J = 14.9 Hz, 4H), 7.07 – 6.99 (d, J = 10.6 Hz, 2H), 6.89 (d, J = 14.9 Hz, 4H), 3.97 – 3.88 (m, 4H), 2.75 – 2.55 (m, 2H), 2.28 (s, 2H), 1.74 – 1.65 (m, 4H), 1.60 (m, 2H), 1.53 – 1.41 (m, 4H), 1.30 (dd, J = 17.8, 5.2 Hz, 6H), 0.95 (t, J = 7.4 Hz, 6H), 0.86 – 0.79 (m, 3H).

 $(5-(4-(bis(2',4'-dibutoxy-[1,1'-biphenyl]-4-yl)amino)phenyl)-4-hexylthiophen-2-yl)boronic acid (24) Compound 24 was synthesized according to general procedure of boric acid, as yellow oil in 58% yield. 1H NMR (400 MHz, CDCl₃) <math>\delta$ 7.42 (d, J = 8.3 Hz, 4H), 7.23 (dd, J = 12.8, 6.7 Hz, 4H), 7.21 – 7.16 (m, 2H), 7.13 (d, J = 8.3 Hz, 4H), 7.02 (s, 1H), 6.53 (d, J = 9.0 Hz, 4H), 3.96 (dt, J = 10.6, 6.4 Hz, 8H), 2.62 (t, 2H), 2.14 (s, 2H), 1.80 – 1.70 (m, 8H), 1.58 (m, 2H), 1.47 (ddd, J = 29.5, 14.9, 7.4 Hz, 8H), 1.27 (dd, J = 17.8, 5.2 Hz, 6H), 0.95 (dt, J = 23.4, 7.4 Hz, 12H), 0.86 – 0.79 (t, 3H).

(5''-(4-(bis(4-butoxyphenyl)amino)phenyl)-3,4',4''-trihexyl-[2,2':5',2''-terthiophen]-5-yl)boronic acid (25) Compound 25 was synthesized according to general procedure of boric acid, as yellow oil in 52% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 11.4 Hz, 2H), 7.21 (d, J = 7.9 Hz, 2H), 7.16 (d, J = 4.9 Hz, 4H), 6.98 (m, 3H), 6.85 (d, J = 8.6 Hz, 4H), 3.97 (m, 8H), 2.81 (d, J = 7.0 Hz, 6H), 1.84 – 1.73 (m, 4H), 1.58 – 1.48 (m, 6H), 1.32 (s, 22H), 1.00 – 0.92 (t, J = 12.4 Hz, 15H).

(5''-(4-(bis(2',4'-dibutoxy-[1,1'-biphenyl]-4-yl)amino)phenyl)-3,4',4''-trihexyl-[2,2':5',2''-terthiophen]-5yl)boronic acid (26) Compound 26 was synthesized according to general procedure of boric acid, as yellow oil in 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.3 Hz, 4H), 7.25 (dd, J = 12.8, 6.7 Hz, 4H), 7.22 – 7.18 (m, 2H), 7.13 (d, J = 8.3 Hz, 4H), 7.04 (d, J = 8.3 Hz, 1H), 6.95 (s, 2H), 6.53 (d, J = 9.0 Hz, 4H), 3.96 (dt, J = 10.6, 6.4 Hz, 8H), 2.32 (t, J = 10.6, 6.4 Hz, 6H), 2.18 (s, 2H), 1.80 – 1.70 (m, 8H), 1.57 – 1.26 (m, 34H), 0.95 (m, 21H).

4-butoxy-N-(4-butoxyphenyl)-N-(4-(3-hexyl-5-(isoquinolin-6-yl)thiophen-2-yl)phenyl)aniline (27) Compound **27** was synthesized according to general procedure of Suzuki reaction, as orange oil in 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.85 (s, 1H), 8.34 (d, J = 8.2 Hz, 1H), 8.15 (d, J = 8.2 Hz, 1H), 8.02 (s, 1H), 7.56 (d, J = 5.2 Hz, 2H), 7.24 (d, J = 10.6 Hz, 2H), 7.13 (d, J = 14.9 Hz, 4H), 7.09 – 6.99 (m, 2H), 6.93 (s, 1H), 6.88 (d, J = 8.6 Hz, 4H), 3.97 – 3.88 (m, 4H), 2.62 (t, 2H), 1.76 – 1.67 (m, 4H), 1.58 (m, 2H), 1.53 – 1.41 (m, 4H), 1.27 (dd, J = 17.8, 5.2 Hz, 6H), 0.95 (t, J = 7.4 Hz, 6H), 0.86 – 0.79 (m, 3H). [M] ⁺ calcd. For C₄₅H₅₀N₂O₂S, 682.3593; found,682.3622.

2',4'-dibutoxy-N-(2',4'-dibutoxy-[1,1'-biphenyl]-4-yl)-N-(4-(3-hexyl-5-(isoquinolin-6-yl)thiophen-2-yl)ph enyl)-[1,1'-biphenyl]-4-amine (28) Compound **28** was synthesized according to general procedure of Suzuki reaction, as orange oil in 75 % yield. ¹H NMR (400 MHz, CDCl₃) δ 8.85 (s, 1H), 8.35 (d, J = 8.2 Hz, 1H), 8.21 (d, J = 8.2 Hz, 1H), 8.05 (s, 1H), 7.58 (d, J = 5.2 Hz, 2H), 7.47 (d, J = 8.3 Hz, 4H), 7.25 (dd, J = 12.8, 6.7 Hz, 4H), 7.21 – 7.16 (m, 2H), 7.13 (d, J = 8.3 Hz, 4H), 7.02 (s, 1H), 6.53 (d, J = 9.0 Hz, 4H), 3.96 (dt, J = 10.6, 6.4 Hz, 8H), 2.62 (t, 2H), 2.14 (s, 2H), 1.80 – 1.70 (m, 8H), 1.58 (m, 2H), 1.47 (ddd, J = 29.5, 14.9, 7.4 Hz, 8H), 1.27 (dd, J = 17.8, 5.2 Hz, 6H), 0.95 (dt, J = 23.4, 7.4 Hz, 12H), 0.86 – 0.79 (t, 3H). [M] ⁺ calcd. For C₆₅H₇₄N₂O₂S₃, 978.5369; found, 978.5437.

4-butoxy-N-(4-butoxyphenyl)-N-(4-(3',3'',4-trihexyl-5''-(isoquinolin-6-yl)-[2,2':5',2''-terthiophen]-5-yl)p henyl)aniline (29) Compound **29** was synthesized according to general procedure of Suzuki reaction, as orange oil in 83 % yield. ¹H NMR (400 MHz, CDCl₃) δ 9.18 (d, *J* = 28.1 Hz, 1H), 8.48 (d, *J* = 25.8 Hz, 1H), 8.04 (s, 1H), 7.84 - 7.63 (d, *J* = 16.7 Hz, 3H), 7.40 - 7.32 (d, 2H), 7.28 (m, 2H), 7.10 (d, *J* = 6.8 Hz, 4H), 6.94 (d, *J* = 6.8 Hz, 3H), 6.85 (d, *J* = 6.9 Hz, 4H), 3.99(t, 8H), 2.83 (s, 6H), 1.74 (m, 4H), 1.65 (m, 6H), 1.35 - 1.23 (m, 22H), 0.97 (t, 15H), 0.90 (s, 35H). [M] ⁺ calcd. For C₆₅H₇₈N₂O₄S,1014.5225; found,1014.5615.

2',4'-dibutoxy-N-(2',4'-dibutoxy-[1,1'-biphenyl]-4-yl)-N-(4-(3',3'',4-trihexyl-5''-(isoquinolin-6-yl)-[2,2':5 ',2''-terthiophen]-5-yl)phenyl)-[1,1'-biphenyl]-4-amine (30) Compound **29** was synthesized according to general procedure of Suzuki reaction, as orange oil in 76 % yield. ¹H NMR (400 MHz, CDCl₃) δ 8.79 (s, 1H), 8.35 (d, J = 8.2 Hz, 1H), 8.13 (d, J = 8.2 Hz, 1H), 8.02 (s, 1H), 7.56 (d, J = 5.2 Hz, 2H), 7.44 (d, J = 8.3 Hz, 4H), 7.25 (dd, J = 12.8, 6.7 Hz, 4H), 7.20 – 7.15 (m, 2H), 7.10 (d, J = 8.3 Hz, 4H), 7.01 (d, J = 8.3 Hz, 1H), 6.93 (s, 2H), 6.55 (d, J = 9.0 Hz, 4H), 3.98 (dt, J = 10.6, 6.4 Hz, 8H), 2.36 (t, J = 10.6, 6.4 Hz, 6H), 1.80 – 1.70 (m, 8H), 1.57 – 1.26 (m, 34H), 0.95 (m, 21H). [M] ⁺ calcd. For C₈₅H₁₀₂N₂O₄S₃, 1310.7002; found,1310.6113. **6-(5-(4-(bis(4-butoxyphenyl)amino)phenyl)-4-hexylthiophen-2-yl)-2-(2-ethoxy-2-oxoethyl)isoquinolin-2ium (31)** Compound **30** (150 mg, 0.22 mmol) and BrCH₂COOEt (0.24 ml, 2.2 mmol) was dissolved in 10 ml CH₃CN, the mixture was refluxed for 12 h. when the reaction was finished, the mixture was concentrated by rotary evaporation. The crude red solid was purified by silica gel column chromatograph with CH₂Cl₂/ CH₃OH (12 : 1, v/v) to give compound 31 (138 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 10.41 (s, 1H), 8.65 (d, J = 8.2 Hz, 1H), 8.25 (d, J = 8.2 Hz, 1H), 8.10 (s, 1H), 7.62 (d, J = 5.2 Hz, 2H), 7.37 (d, J = 10.6 Hz, 2H), 7.08 (d, J = 14.9 Hz, 4H), 7.04 – 6.98 (m, 2H), 6.94 (s, 3H), 6.86 (d, J = 8.6 Hz, 4H), 6.22 (s, 2H), 4.33 – 4.28 (m, 2H), 3.73 (q, J = 7.0 Hz, 2H), 2.87 – 2.72 (m, 6H), 2.65 (s, 3H), 1.48 (dd, J = 14.8, 7.5 Hz, 6H), 1.30 (m, J = 17.7, 10.4, 4.8 Hz, 25H), 0.98 (d, J = 7.4 Hz, 6H), 0.89 (dd, J = 10.5, 5.7 Hz, 9H). [M]⁺ calcd. For C₄₉H₅₇N₂O₄S,769.4039; found, 769.2312.

6-(5-(4-(bis(2',4'-dibutoxy-[1,1'-biphenyl]-4-yl)amino)phenyl)-4-hexylthiophen-2-yl)-2-(2-ethoxy-2-oxoe thyl)isoquinolin-2-ium (32) The synthesis procedure was similar to procedure of systhesis Compound **31**. A red solid was obtaind in 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 10.15 (s, 1H), 8.75 (d, J = 8.2 Hz, 1H), 8.45 (d, J = 8.2 Hz, 1H), 8.00 (d, 2H), 7.52 (d, J = 5.2 Hz, 2H), 7.46 (d, J = 8.3 Hz, 4H), 7.28 (dd, J = 12.8, 6.7 Hz, 4H), 7.22 – 7.18 (m, 2H), 7.12 (d, J = 8.3 Hz, 4H), 7.04 (s, 1H), 6.57 (d, J = 9.0 Hz, 4H), 5.98 (s, 2H), 3.99 (m, 10H), 2.62 (t, 2H), 1.80 – 1.70 (m, 8H), 1.58 – 1.47 (ddd, J = 29.5, 14.9, 7.4 Hz, 10H), 1.27 (m, 9H), 0.95 – 0.85 (dt, J = 23.4, 7.4 Hz, 15H). [M]⁺ calcd. For C₆₉H₈₁N₂O₆S, 1065.5815; found, 1065.5802.

6-(5''-(4-(bis(4-butoxyphenyl)amino)phenyl)-3,4',4''-trihexyl-[2,2':5',2''-terthiophen]-5-yl)-2-(2-ethoxy-2-oxoethyl)isoquinolin-2-ium (33) The synthesis procedure was similar to procedure of synthesis Compound 31. A red solid was obtaind in 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 10.41 (s, 1H), 8.65 (d, J = 8.2 Hz, 1H), 8.25 (d, J = 8.2 Hz, 1H), 8.10 (s, 1H), 7.62 (d, J = 5.2 Hz, 2H), 7.37 (d, J = 10.6 Hz, 2H), 7.08 (d, J = 14.9 Hz, 4H), 7.04 – 6.98 (m, 2H), 6.94 (s, 3H), 6.86 (d, J = 8.6 Hz, 4H), 6.22 (s, 2H), 4.33 – 4.28 (s, 2H), 3.73 (t, 4H), 2.87 – 2.72 (m, 6H), 1.72-1.65(m, 4H) 1.48 (dd, J = 14.8, 7.5 Hz, 6H), 1.30 (m, J = 17.7, 10.4, 4.8 Hz, 25H), 0.98 (d, J = 7.4 Hz, 6H), 0.89 (dd, J = 10.5, 5.7 Hz, 9H). [M] ⁺ calcd. For C₆₉H₈₅N₂O₄S₃, 1101.5672; found, 1101.5713.

6-(5''-(4-(bis(2',4'-dibutoxy-[1,1'-biphenyl]-4-yl)amino)phenyl)-3,4',4''-trihexyl-[2,2':5',2''-terthiophen]-5-yl)-2-(2-ethoxy-2-oxoethyl)isoquinolin-2-ium (**34**) The synthesis procedure was similar to procedure of synthesis Compound **31**. A red solid was obtaind in 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 10.15 (s, 1H), 8.75 (d, J = 8.2 Hz, 1H), 8.45 (d, J = 8.2 Hz, 1H), 8.00 (s, 1H), 7.52 (d, J = 5.2 Hz, 2H), 7.42 (d, J = 8.3 Hz, 4H), 7.23 (dd, J = 12.8, 6.7 Hz, 4H), 7.21 – 7.16 (m, 2H), 7.13 (d, J = 8.3 Hz, 4H), 7.02 (s, 1H), 6.92 (s, 2H), 6.53 (d, J = 9.0 Hz, 4H), 5.97 (s, 2H), 3.96 (m, 10H), 2.62 (t, 6H), 1.80 – 1.70 (m, 8H), 1.58 (m, 6H), 1.47 (ddd, J = 29.5, 14.9, 7.4 Hz, 8H), 1.27 (m, 21H), 0.95–0.79 (t, 21H). [M]⁺ calcd. For C₈₉H₁₀₉N₂O₆S₃, 1397.7448; found, 1397.7496.

6-(5-(4-(bis(4-butoxyphenyl)amino)phenyl)-4-hexylthiophen-2-yl)-2-(carboxymethyl)isoquinolin-2-ium (JH301) Compound 31(76 mg, 0.10 mmol) and LiOH·H₂O(42 mg, 1 mmol) were dissolved in EtOH. The mixture was stirred at room temperature for 24 h. 2 M HCl was added to adjust PH to neutrality. Then the mixture was extracted by CH₂Cl₂ and evaporated to dryness. The crude red solid was purified by silica gel column chromatograph with CH₂Cl₂/ CH₃OH (5 : 1, v/v) to give a red solid (28 mg, 38%). ¹H NMR (400 MHz, CDCl₃) δ 9.45 (d, J = 101.4 Hz, 1H), 8.35 (d, J = 81.9 Hz, 2H), 7.85 (d, J = 79.9 Hz, 2H), 7.37 (d, J = 57.9 Hz, 2H), 7.08 (d, J = 35.4 Hz, 7H), 6.85 (d, J = 70.1 Hz, 6H), 5.46 (s, 2H), 3.89 (s, 6H), 2.32 (d, J = 59.1 Hz, 2H), 1.80 – 1.68 (m, 4H), 1.54 – 1.45 (ddd, J = 29.5, 14.9, 7.4 Hz, 6H), 1.31– 1.27 (m, 4H), 0.95 – 0.85 (dt, J = 23.4, 7.4 Hz, 9H). [M]⁺ calcd. For C₄₇H₅₃N₂O₄S, 741.3726; found, 741.2327.

6-(5''-(4-(bis(4-butoxyphenyl)amino)phenyl)-3,4',4''-trihexyl-[2,2':5',2''-terthiophen]-5-yl)-2-(carboxym ethyl)isoquinolin-2-ium (JH302) The synthesis procedure was similar to the synthesis procedure of **JH301**. A red solid was obtained in 33%. ¹H NMR (400 MHz, CDCl₃) δ 10.32 (s, 1H), 8.49 (d, J = 8.2 Hz, 1H), 8.21 (d, J = 8.2 Hz, 1H), 7.99 (s, 1H), 7.68 (d, J = 5.2 Hz, 2H), 7.48 (d, J = 10.6 Hz, 2H), 7.19 (d, J = 14.9 Hz, 4H), 7.04 – 6.98 (m, 2H), 7.01 (s, 3H), 6.77 (d, J = 8.6 Hz, 4H), 6.44 (s, 2H), 3.73 (t, J = 7.0 Hz, 4H), 2.65 (t, 6H), 1.73-1.59 (m, 4H),

1.48 (dd, J = 14.8, 7.5 Hz, 6H), 1.3–1.25 (m, J = 17.7, 10.4, 4.8 Hz, 22H), 1.04 (d, J = 7.4 Hz, 6H), 0.88 (dd, J = 10.5, 5.7 Hz, 9H). [M] $^+$ calcd. For C₆₇H₈₁N₂O₄S₃, 1073.5358; found, 1073.4.

6-(5-(4-(bis(2',4'-dibutoxy-[1,1'-biphenyl]-4-yl)amino)phenyl)-4-hexylthiophen-2-yl)-2-(carboxymethyl)i soquinolin-2-ium (JH303) The synthesis procedure was similar to procedure of systhesis of **JH301**. A red solid was obtaind in 27% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.76 (s, 1H), 8.59 (d, 1H), 7.94 (d, 1H), 7.87 (d, 2H), 7.53 (d, 2H), 7.15 (d, 4H), 7.11 (d, 4H), 6.97 (m, 2H), 6.95 (d, 4H), 6.85(s, 1H), 6.77 (d, 4H), 5.98 (s, 2H), 3.99 (m, 8H), 2.62 (t, 2H), 1.80 – 1.70 (m, 8H), 1.58 – 1.44 (m, 10 H), 1.3 – 1.24 (m, 6H), 0.95-0.88 (t, 15H). [M] ⁺ calcd. For C₆₉H₈₅N₂O₄S₃, 1037.5502; found, 1037.2509.

6-(5''-(4-(bis(2',4'-dibutoxy-[1,1'-biphenyl]-4-yl)amino)phenyl)-3,4',4''-trihexyl-[2,2':5',2''-terthiophen]-5-yl)-2-(carboxymethyl)isoquinolin-2-ium (JH304) The synthesis procedure was similar to the synthesis procedure of JH301. A red solid was obtained in 23%. ¹H NMR (400 MHz, CDCl₃) δ 10.05 (s, 1H), 8.70 (d, J = 8.2 Hz, 1H), 8.42 (d, J = 8.2 Hz, 1H), 7.93 (s, 1H), 7.68 (d, J = 5.2 Hz, 2H), 7.56 (d, J = 8.3 Hz, 4H), 7.37 (dd, J = 12.8, 6.7 Hz, 4H), 7.23 – 7.19(m, 2H), 7.13 (d, J = 8.3 Hz, 4H), 6.93 (s, 1H), 6.90 (s, 2H), 6.47 (d, J = 9.0 Hz, 4H), 5.97 (s, 2H), 3.92 (m, 8H), 2.62 (t, 6H), 1.80 – 1.70 (m, 8H), 1.58 (m, 6H), 1.47 (ddd, J = 29.5, 14.9, 7.4 Hz, 8H), 1.27 (m, 18H), 0.95–0.79 (t, 21H). [M] ⁺ calcd. For C₈₇H₁₀₅N₂O₆S₃, 1369.7135; found, 1369.6.

Fig. 5b IPCE and integral current density of the DSSSCs sensitized by JH series of dyes