Chemistry

Dynamic Article Links ► Supplementary Information

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

Achieving electrochemical capacitor functionality from a traditional battery material: conformal, nanoscale LiMn₂O₄ coatings on 3-D, device-ready carbon nanoarchitectures

Megan B. Sassin,^{*^a} Steve G. Greenbaum,^b Phillip E. Stallworth,^b Azzam N. Mansour,^c Benjamin P. ⁵ Hahn,^d Katherine A. Pettigrew,^d and Debra R. Rolison,^a Jeffrey W. Long,^{*^a}

45

50

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

XAS experimental details

- ¹⁰ The K-edge absorption was isolated by fitting the pre-edge region (6239–6439 eV) with a quadratic polynomial, extrapolating over the entire range of the spectrum, and subtracting the pre-edge background from the entire spectrum. Step normalization was applied using the atomic absorption, ¹⁵ which was determined by fitting the post edge region (6639–
- 8040 eV) with a cubic polynomial. The photoelectron wave number was derived by setting the inner potential to the inflection point energy. The extended X-ray absorption fine structure (EXAFS) data, $\chi(k)$, were extracted using multi-node
- ²⁰ cubic spline procedures applied to k^3 -weighted spectra over the k-range of 2.0–15.0 Å⁻¹. The post-edge background was optimized by minimizing the amplitude of non-physical peaks in the 0–0.9 Å region of the Fourier transform. The data analysis up to this point was carried out using the WinXAS software
- ²⁵ package (version 3.1).^{1,2} The Fourier transforms presented here were generated with k³-weighted EXAFS spectra over the range 3.0–15 Å⁻¹ and a Hanning window of 1.0 Å⁻¹ using the curve fitting code FEFFIT (version 2.984) of the University of Washington XAFS (UWXAFS) software package.³

³⁰ Fig. S1. Solid-state ²³Na nuclear magnetic resonance spectra of Na⁺-MnOx (—) and Li⁺-MnOx (—).

40

This journal is © The Royal Society of Chemistry [year]

Fig. S2. Thermal gravimetric analysis (—) and differential scanning calorimetry (– –) of (A) Li^+ -MnOx in an argon atmosphere and (B) Li^+ -MnOx_(300-Ar) in an oxygen atmosphere.

Fig. S3. Plot of # of Li atoms per gram of sample versus fraction of Li atoms in tetrahedral site derived from solid-state ⁷Li NMR for LiMn_2O_4 standard (\checkmark), Li⁺-MnOx (\bullet), Li⁺-MnOx($_{300\text{-Art}}$ (\bullet), and Li⁺-MnOx($_{300\text{-Art}}$ (\bullet).

35

40

25

30

Fig. S4. Scanning electron micrographs of the exterior surface of (A) $\text{Li}^+\text{-MnO}x_{(300-\text{Ar}/200-\text{Air})}$, (B) $\text{Li}^+\text{-MnO}x_{(300-\text{Ar}/200-\text{Air})}$ after 200 voltammetric cycles in 2.5 M Li_2SO_4 , and (C) $\text{Li}^+\text{-MnO}x_{(300-\text{Air}/200-\text{Air})}$ after 200 cycles in 2.5 M Li_2SO_4 + 20 mM NaHCO₃.

Fig. S5. X-ray photoelectron C1s spectra of $Li^+-MnOx_{(300-Atr/200-Air)}$ (—) and $Li^+-MnOx_{(300-Atr/200-Air)}$ after 200 voltammetric cycles in 2.5 M $Li_2SO_4 + 20$ mM NaHCO₃ (—).

40 Notes and references

^aU. S. Naval Research Laboratory, Surface Chemistry Branch (Code 6170),Washington, DC 20375, USA. ^{*}Corresponding Authors: Fax: 202-767-3321; E-mail: megan.sassin@nrl.navy.mil, jeffrey.long@nrl.navy.mil, 45 rolison@nrl.navy.mil

^bHunter College of CUNY, 695 Park Avenue, New York, NY 10065 E-mail: steve.greenbaum@hunter.cuny.edu

^cNaval Surface Warfare Center, Carderock Division, 9500 MacArthur Blvd., West Bethesda, MD 20817-5700

50 E-mail: azzam.mansour@navy.mil

^dNova Research Inc., 1900 Elkin Street, Suite 230, Alexandria, Virginia 22308 E-mail: kapettigrew@gmail.com, hahnbp@gmail.com

- S1. T. Ressler, J. Synchrotron Radiat., 2000, 5, 118.
- S2. T. Ressler, J. Phys. IV, 1997, 7, C2-269.
- S3. E.A. Stern, M. Newville, B. Ravel, Y. Yacoby, and D. Haskel, *Physica B*, 1995, **208-209**, 117.