Supporting Information

Fabrication of high tap density LiFe_{0.6}Mn_{0.4}PO₄/C microspheres by a double carbon coating–spray drying method for high rate lithium ion batteries

Wen Liu[#], Ping Gao[#], Yingying Mi, Jitao Chen*, Henghui Zhou*, and Xinxiang Zhang

College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China

*To whom correspondence should be addressed. Fax: 86-10-62757908; Tel: 86-10-627757908; E-mail:

hhzhou@pku.edu.cn; chenjitao@pku.edu.cn

Table S1: Crystallographic parameters of the high tap density $\text{LiFe}_{0.6}\text{Mn}_{0.4}\text{PO}_4/\text{C}$ microspheres selected from the Rietveld refinement results

Space group	Pnma					
Туре	Atom	X	У	Ζ	Occupancy	B(Å ²)
Li +1	Li1	0.0000(0)	0.0000(0)	0.0000(0)	1.064	3.46
Fe+2	Fe1	0.2818(5)	0.2500(3)	0.9736(3)	0.604	2.95
Mn+2	Mn1	0.2819(2)	0.2500(3)	0.9736(2)	0.398	2.80
Р	P1	0.0935(4)	0.2500(2)	0.4119(3)	1.004	2.06
O -2	01	0.1012(2)	0.2500(5)	0.7344(6)	0.981	2.24
O -2	O2	0.4567(3)	0.2500(3)	0.2071(7)	1.004	3.18
O -2	O3	0.1647(5)	0.0445(1)	0.2816(2)	1.002	2.87
Cell	a: 10.3	618(2) Å b: 6.0	0360(5) Å c: 4.	7070(4) Å V: 2	94.395(4) Å ³	
parameters						
wRp	8.59%					
Rp	6.50%					
CHI ²	1.144					

Table S2: The discharge capacities and capacity retention ratios for $LiFe_{0.6}Mn_{0.4}PO_4/C$ at different current densities

Discharge rate	LiFe _{0.6} Mn _{0.4} PO ₄ /C microspheres		LiFe _{0.6} Mn _{0.4} PO ₄ /C nanoparticles		
	Discharge capacity	Ratio Q _{nc} /Q _{0.1C}	Discharge capacity	Ratio Q _{nc} /Q _{0.1C}	
0.1C	163.7	100%	160.2	100%	
1.0C	153.3	93.6%	146.2	91.3%	
5.0 C	143.8	87.8%	131.4	82.0%	
10C	135.2	82.6%	123.3	77.0%	
20 C	126.0	77.0%	106.3	66.3%	

Sample	Index	0.1 C	1C	5C
nanoparticles (0.82g·cm ⁻³)	capacity (mAh·g ⁻¹)	163.7	153.3	143.8
	Energy density $(Wh \cdot kg^{-1})$	588.2	538.0	486.0
	Energy density (Wh \cdot L ⁻¹)	482.3	441.2	398.5
microspheres (1.4g·cm ⁻³)	capacity $(mAh \cdot g^{-1})$	160.2	146.2	131.4
	Energy density $(Wh \cdot kg^{-1})$	572.5	502.4	438.3
	Energy density (Wh \cdot L ⁻¹)	801.5	703.4	613.6

 $\label{eq:solution} \textbf{Table S3} \text{: The discharge capacity and energy density data of the micro-spherical and nano LiFe_{0.6}Mn_{0.4}PO_4/C at$

different rates

 $\label{eq:s4:Table S4:The discharge capacity and energy density of the LiFe_{0.6}Mn_{0.4}PO_4/C \ microspheres after long-term$

cycling

Index	Before	cycle	After cycle		
	Discharge capacity	Energy density	Discharge capacity	Energy density	
$2C(100^{\text{th}} \text{ cycle})$	139.9 mAh·g ⁻¹	477.4 Wh·kg ⁻¹	138.3 mAh·g ⁻¹	473.5 Wh·kg ⁻¹	
5C(200 th cycle)	129.8 mAh·g ⁻¹	429.5 Wh·kg ⁻¹	$128.4 \text{ mAh} \cdot \text{g}^{-1}$	420.8 Wh·kg ⁻¹	

Fig.S1 (a) The particle size distribution profiles for the $LiFe_{0.6}Mn_{0.4}PO_4/C$ nanoparticles; (b) The particle size distribution profiles for the $LiFe_{0.6}Mn_{0.4}PO_4/C$ microspheres.

Fig.S2 Ragone plot of volumetric energy density vs. volumetric power density.

Fig.S3 (a) CV curves of the LiFe_{0.6}Mn_{0.4}PO₄/C microspheres at various scanning rates between 2.0 and 4.5 V; (b) the relationship between the peak current (Ip) and the square root of scan rate ($v^{1/2}$); (c)The diffusion coefficients of lithium-ion in the spherical LiFe_{0.6}Mn_{0.4}PO₄/C electrode calculated from CV curves.