Supplementary Information

Design of broadband transparent electrodes for flexible organic solar cells**

Juyoung Ham, Sungjun Kim, Gwan Ho Jung, Wan Jae Dong and Jong-Lam Lee*^a

Figure S1. Sheet resistances of Ag films of various thickness on dielectrics.

Figure S2. Simulated contour plots of average transmittance (400 ~ 700 nm) for $D_0/Ag/WO_3$ as a function of thickness (a) $D_0 (n = 1.7, k = 0)$, (b) $D_0 (n = 2.3, k = 0)$, (c) $D_0 (n = 3.0, k = 0)$.

Figure S3. Apparent transmittance of $D_0/Ag/WO_3$ as a function of the refractive index (from 1.5 to 3.0) and extinction coefficient (k = 0, 0.05, and 0.1)) of outer dielectrics.

Figure S4. W 4*f* and O 1*s* core-level spectra of WO_{3-x} films deposited at different rates.

Figure S5. Changes in PCE of device using $Ta_2O_5/Ag/WO_{3-x}$ and ITO/WO_{3-x} electrode during exposure to air.