Supplementary information

Nanoparticle Calculations:

A combination of DLS particle size distribution, EDAX and certain basic assumption was used to determine the number of magnetite particles per gram of the powder for bare magnetite and magnetite-silica composite.

The magnetite unit cell parameters are: a=b=c=8.39 Å, which translates to a unit cell volume of 590.5 Å³ i.e. 590.5 x 10⁻²⁴ cm³. There are 8 Fe₃O₄ units per unit cell, which gives a volume of 73.8 x 10⁻²⁴ cm³ per Fe₃O₄ unit. Total number of Fe & O atoms per unit cell is 24 and 32 respectively. The weight of one unit cell can be calculated from the weight of individual Fe atoms (55.84/6.02x10²³ = 9.275x10⁻²³ g) and O atoms (16/6.02x10²³ = 2.657x10⁻²³ g) to be 307.6 x10⁻²³ g. The table below gives the detailed calculations:

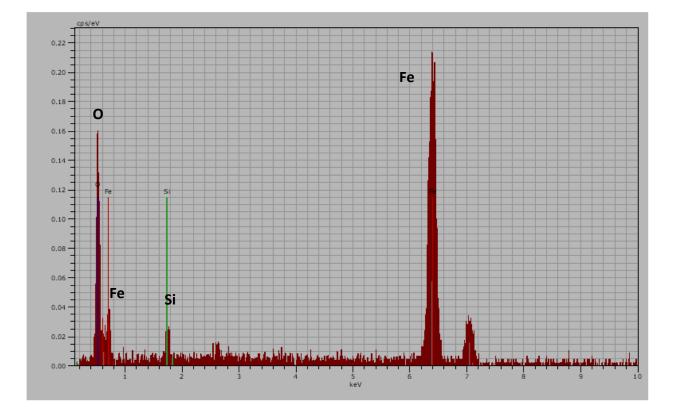
Size in nm	Numb er in %	Volume of the particles (4/3∏r ³) in cm ³	No. of unit cell/ particle	Tot no of unit cells	Number of Fe atom/parti cle	Total No. of Fe atoms	weight of single particle in g	Total weight of particles in g
24	9	7.234x10 ⁻	12261	110349	294264	2648376	37.721x10 ⁻	335.439x10 ⁻
28	27	11.488x1 0 ⁻¹⁸	19471	525717	467304	12617208	59.897x10 ⁻	1616.139x1 0 ⁻¹⁸
33	32	18.806x1 0 ⁻¹⁸	31875	1020000	765000	24480000	98.055x10 ⁻	3137.760x1 0 ⁻¹⁸
38	21	28.715x1 0 ⁻¹⁸	48669	1022049	1168056	24529176	149.717x1 0 ⁻¹⁸	3144.057x1 0 ⁻¹⁸
44	9	44.578x1 0 ⁻¹⁸	75557	680013	1813368	16320312	232.444x1 0 ⁻¹⁸	2091.996x1 0 ⁻¹⁸
51	2	69.419x1 0 ⁻¹⁸	117660	235320	2823840	5647680	361.969x1 0 ⁻¹⁸	723.939x10 ⁻
	100		305493	3593448	7331832	86242752		11049.330x 10 ⁻¹⁸

From the above table, it is clear that for a set of 100 nanoparticles, total number of unit cells = 3593448.

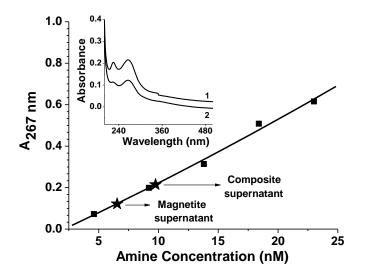
Weight of one unit cell = 307×10^{-23} g; which gives the weight of all unit cells = weight of 100 nanoparticles to be 11.05×10^{-15} g.

If the weight of 100 nanoparticles is known, one can estimate the number of nanoparticles per gram of the powder to be: 9.04×10^{15}

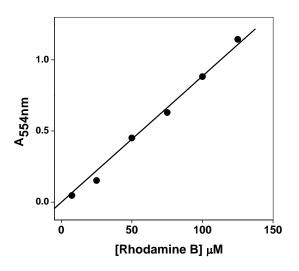
To understand the amount of silica, we need to calculate in terms of Fe: Si ratio. Hence by simple calculations, we can estimate the number of Fe atoms per gram to be:

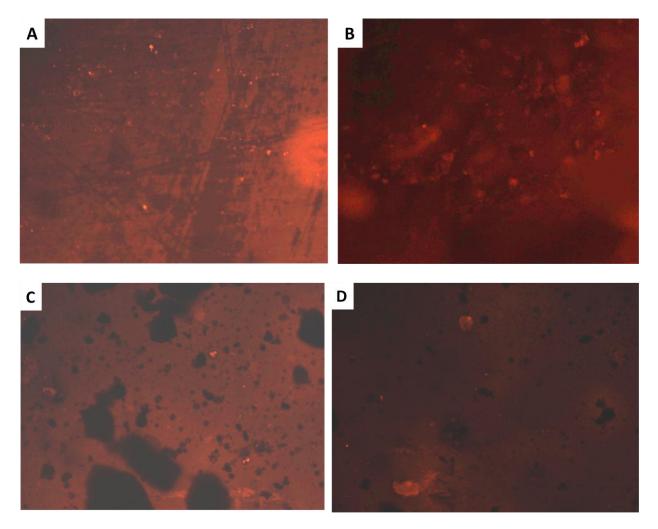

100 Nanoparticles correspond to 86242752 Fe atoms. Since we know the number of nanoparticles per gram, we can determine number of Fe atoms per gram of nanoparticles to be: 77.96×10^{20}

By EDAX, (Figure S1), the Si : Fe ratio is 1:43. Hence for every 43 atoms of Fe, there is 1 Si atom (or SiO₂ unit). Hence for 77.96 x 10^{20} Fe atoms, this translates to 1.81×10^{20} units of SiO₂ per gram of nanoparticles.


Weight of SiO₂ unit (60.08/6.023 x 10^{23}) = 9.97 x 10^{-23} g.

Hence the total weight of all SiO_2 units per gram of nanoparticles is: 0.018 g.


Here we make an assumption that the size of magnetite is same in case of magnetite and magnetitesilica composite. This is not far from true if one takes in to account the average DLS sizes for magnetite (~ 37 nm) and magnetite silica composite (~46 nm); with the TEM size in the range of 29 nm. Taking this into consideration, the magnetite-silica composite contains 1.8 % of silica.


Supplementary information S1: EDAX analysis of magnetite -silica nanocomposite

Supplementary information figure S2: Amine quantification standard curve. Inset shows the curves for composite (curve 1) and magnetite (curve 2).

Supplementary information figure S3: Rhodamine B standard curve recorded as a function of dye concentration and measuring the absorbance at 540 nm.

Supplementary information figure S4: Fluorescence images of Rhodamine B tagged particles: A & B: Rhodamine B tagged magnetite-silica composite; C&D: Rhodamine B tagged bare magnetite particles.