Electronic Supplementary Information (ESI)

Effect of Oxygen Vacancies on the Electrochemical Performance of

Tin Oxide

Na Li^{a,b}, Kui Du^a, Gang Liu^a, Ying Peng Xie^a, Guang Min Zhou^a, Jing Zhu^c,

FengLi^{a,*} and Hui-Ming Cheng^a

^a Shenyang National Laboratory for Materials Science, Institute of Metal Research,

Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China

^b Department of Materials Science & Engineering, School of Chemistry and Materials

S1

Science, University of Science and Technology of China, Hefei 230026, China

^c Beijing National Center for Electron Microscopy, Tsinghua University, Beijing

100084, China

Fax: (+86) 24-2390-3126

E-mail: fli@imr.ac.cn (FL)

Fig. S1 High-resolution XPS spectra of Sn 3d for (a) $SnO_{2-\delta}$ and (b) SnO_2 .

Fig. S2 TEM images of (a) $SnO_{2-\delta}$ nanoparticles and (b) SnO_2 nanoparticles. Scale bar: 20 nm.

Fig. S3 SEM images of (a) $SnO_{2-\delta}$ nanoparticles and (b) SnO_2 nanoparticles. Scale bar: 500 nm.