Electronic Supplementary Information (ESI) Effect of Oxygen Vacancies on the Electrochemical Performance of Tin Oxide Na Li^{a,b}, Kui Du^a, Gang Liu^a, Ying Peng Xie^a, Guang Min Zhou^a, Jing Zhu^c, FengLi^{a,*} and Hui-Ming Cheng^a ^a Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China ^b Department of Materials Science & Engineering, School of Chemistry and Materials S1 Science, University of Science and Technology of China, Hefei 230026, China ^c Beijing National Center for Electron Microscopy, Tsinghua University, Beijing 100084, China Fax: (+86) 24-2390-3126 E-mail: fli@imr.ac.cn (FL) Fig. S1 High-resolution XPS spectra of Sn 3d for (a) $SnO_{2-\delta}$ and (b) SnO_2 . Fig. S2 TEM images of (a) $SnO_{2-\delta}$ nanoparticles and (b) SnO_2 nanoparticles. Scale bar: 20 nm. Fig. S3 SEM images of (a) $SnO_{2-\delta}$ nanoparticles and (b) SnO_2 nanoparticles. Scale bar: 500 nm.