Supporting Information

For

Potassium Niobate Nanostructures: Controllable Morphology, Growth

Mechanism, and Photocatalytic Activity

Linqin Jiang,^a Yu Qiu,^b and Zhiguo Yi^{a,*}

^aKey Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute

of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou

350002, China

^bNew Energy Technology Center, Shanghai Institute of Microsystem and Information

Technology, Chinese Academy of Sciences, Shanghai 201807, China.

Corresponding Author

*Email: <u>zhiguo@fjirsm.ac.cn</u>. Tel: 86-591-83806523. Fax: 86-591-83714946.

Figure S1. UV-vis spectral changes of RhB as a function of irradiation time catalyzed by KNbO₃ nanotowers synthesized at (a) 150 $^{\circ}$ C, (b) 200 $^{\circ}$ C and (c) nanorods synthesized at 250 $^{\circ}$ C.

Figure S2. UV-vis spectral changes of RhB as a function of irradiation time catalyzed by (a) KNbO₃ nanowires and (b) KNbO₃ nanocubes.

Figure S3. UV-vis diffuse reflectance spectra of various KNbO₃ nanostructures.

Figure S4. Adsorption (dark zone), photosensitization (λ >420 nm) as well as intrinsic photocatalytic effects in RhB degradation upon the KNbO₃ nanocubes.