Supporting Information

A microporous metal-organic framework assembled from am aromatic tetracarboxylate with the potential for hydrogen purification

Yabing He,^{*a*} Shengchang Xiang,^{*b*} Zhangjing Zhang,^{*b*} Shunshun Xiong,^{*a*} Chuande Wu,^{*c*} Wei Zhou,^{*d*,*e*} ⁵ Taner Yildirim,^{*d*,*f*} Rajamani Krishna,^{**g*} and Banglin Chen^{**a*}

- ^a Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States; Fax: (1)-210-458-7428; E-mail: <u>Banglin.Chen@utsa.edu</u>; Homepage: <u>www.utsa.edu/chem/chen.htlm</u>
- ^b Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, 3 Shangsan
- ¹⁰ Road, Cangshang Region, Fuzhou 350007, China
 - ^c Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ^dNIST Center for Neutron Research, Gaithersburg, Maryland 20899-6102, United States
- ^e Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- ^{15 f} Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, USA
 - ^g Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; E-mail: <u>r.krishna@nva.nl</u>

Figure S1. PXRD patterns of as-synthesized UTSA-40 (b) and activated UTSA-40a (c) along with the simulated XRD pattern from the single-crystal X-ray structure (a).

⁵ *Figure S2.* TGA curves of as-synthesized UTSA-40 (black), acetone-exchanged UTSA-40 (red), and activated UTSA-40a (blue) under a nitrogen atmosphere at a heating rate of 5 K min⁻¹.

Figure S4. Excess and absolute high-pressure H₂, CH₄, and CO₂ sorption isotherms at three different temperatures. Solid symbols: adsorption; open symbols: desorption.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2012

5

Figure S5. FTIR spectra of the organic linker H₄L (a), UTSA-40 (b), and UTSA-40a (c).

Figure S6. ¹H NMR (DMSO- d_6 , 300.0 MHz) and ¹³C NMR (DMSO- d_6 , 75.4 MHz) spectra of the organic building block H₄L.

Table S1. Structural data on the different adsorbents evaluated in this study for comparison purposes. The data for MgMOF-74 and NaX are from Herm et al.¹ and Krishna and Long². The data for MIL-101 are taken from Chowdhury et al.³ The data for Cu-TDPAT are from Wu et al.⁴ The data for LTA-5A are from Pakseresht et al.⁵ and Sircar and Golden.⁶

MOFs	Surface area $[m^2 g^{-1}]$	Pore volume $[cm^3 g^{-1}]$	Framework density [kg m ⁻³]
UTSA-40a	1630	0.654	827
MgMOF-74	1800	0.573	905
Cu-TDPAT	1938	0.930	782
MIL-101	2674	1.380	440
NaX	950	0.280	1421
LTA-5A	450	0.250	1508

5

Table S2. Dual-site Langmuir fit parameters for adsorption of CO₂, and CH₄ in **UTSA-40a**. The fits for CO₂ are based on high-pressure isotherm data measured at 240 K, 270 K, and 300 K. The fits for CH₄ are based on two sets of isotherms: (a) low-pressure data measured at 273 K, and 296 K, and (b) high-pressure data measured at 240 K, 270 K, and 300 K. The fits are based on the entire data sets ¹⁰ covering both pressure regions.

		Site A		Site B				
	$q_{A,sat}$ [mol kg ⁻¹]	b_{A0} [Pa ^{-u_i}]	$E_{\rm A}$ [kJ mol ⁻¹]	$V_{\rm A}$	$q_{\mathrm{B,sat}}$ [mol kg ⁻¹]	$b_{ m B0} \ { m Pa}^{- u_i}$	$E_{\rm B}$ [kJ mol ⁻¹]	$\nu_{\rm B}$
CO ₂	8.6	1.10×10^{-13}	27.6	1	7.4	4.12×10^{-10}	23.6	1
CH ₄	14	1.13×10^{-9}	15	1				

Table S3. 1-site Langmuir fit parameters for pure H_2 isotherms in UTSA-40a. The fits are for a temperature of 298 K.

	$q_{\mathrm{A,sat}}$ [mol kg ⁻¹]	b_{A} [Pa ^{-v_i}]	$\nu_{\rm A}$
H_2	19	3.4×10^{-8}	1

¹⁵ *Table S4*. Dual-Langmuir-Freundlich fit parameters for MgMOF-74 (= Mg₂(dobdc) = CPO-27-Mg). These CO₂ fit parameters were determined by fitting adsorption isotherms for temperatures ranging from 278 K to 473 K; the fit parameters are those reported earlier in the work of Mason et al.⁷ The CH₄ parameters were determined by fitting adsorption isotherm data reported in the works of and He et al.⁸, Dietzel et al.⁹ and Bao et al.¹⁰ The H₂ parameters are obtained from absolute uptake data in
 ²⁰ MgMOF-74 at 298 K reported by Yaghi,¹¹ a document that is available on the web. The uptake data is at 298 K, and therefore the fit parameters are valid only for 298 K.

		Site A			Site B				
	$q_{\mathrm{A,sat}}$	$b_{ m A0}$	$E_{ m A}$		$q_{\mathrm{B,sat}}$	$b_{ m B0}$	E_{B}	$\nu_{\rm B}$	
	$[mol kg^{-1}]$	$[\operatorname{Pa}^{-\nu_i}]$	[kJ mol ⁻¹]	$V_{\rm A}$	$[mol kg^{-1}]$	$[\operatorname{Pa}^{-\nu_i}]$	[kJ mol ⁻¹]		
CO ₂	6.8	2.44×10^{-11}	42	1	9.9	1.39×10^{-10}	24	1	
CH ₄	11	7.48×10^{-10}	18.2	1	5	1.64×10^{-11}	18.2	1	
H ₂	36	2.1×10^{-8}		1					

Table S5. Dual-Langmuir-Freundlich parameter fits for **Cu-TDPAT**. The parameters are those reported in the work of Wu et al.⁴ Note that for CH_4 and H_2 , the data is available only at 298 K. There was an unfortunate typographical error in the CO parameters reported in Table 3 of Supporting Information accompanying the paper by Wu et al;⁴ we have therefore also included the correct ⁵ parameters for CO (not considered in this work) in the Table below. The breakthrough and IAST calculations reported by Wu et al.⁴ were performed with the correct parameter sets.

		Site A				Site B		
	$q_{\rm A,sat}$	b_{A0}	$E_{\rm A}$	$V_{\rm A}$	$q_{\rm B,sat}$	$b_{\rm B0}$	$E_{\rm B}$	$V_{\rm B}$
	[mol kg]		[KJ MOI]				[KJ mol]	
CO_2	0.46	1.33×10^{-16}	72	1.2	23.9	2.91×10^{-9}	23.8	0.75
CO	23	2.47×10^{-8}	13.2	0.8	2	6.75×10^{-15}	17.7	1.8
CH ₄	16	5.77×10^{-7}		1				
H ₂	38.5	2.6×10^{-8}		1				

Table S6. Dual-site Langmuir fit parameters for pure component isotherms in **MIL-101**. The fits for CO_2 , and CH_4 and H_2 are based on the experimental data of Chowdhury et al.³ The fits for pure H_2 isotherms in **MIL-101** are based on the experimental data of Latroche et al.,¹² available only at 298 K. There was an unfortunate typographical error in the H_2 parameters reported in Table 12 of Supporting Information accompanying the paper by Wu et al.⁴ The breakthrough and IAST calculations reported by Wu et al.⁴ were performed with the correct parameter sets as given below.

		Site A			Site B				
	$q_{A,sat}$ [mol kg ⁻¹]	b_{A0} [Pa ^{-u_i}]	$E_{\rm A}$ [kJ mol ⁻¹]	$\nu_{\rm A}$	$q_{\mathrm{B,sat}}$ [mol kg ⁻¹]	b_{B0} [Pa ^{-u_i}]	$E_{\rm B}$ [kJ mol ⁻¹]	$v_{\rm B}$	
CO ₂	47	2.22×10^{-10}	17.5	1	1.1	2.95×10^{-11}	36	1	
CH ₄	34	1.79×10^{-9}	9.9	1					
H ₂	60	1.41×10^{-8}		1					

¹⁵ *Table S7.* Dual-site Langmuir fit parameters for adsorption of CO₂, CH₄ and H₂ in **NaX** zeolite. These parameters were determined by fitting adsorption isotherm data reported in the works of Belmabkhout et al.¹³ and Cavenati et al.,¹⁴ after converting the excess data to absolute loadings.

		Site A			Site B				
	$q_{A,sat}$ [mol kg ⁻¹]	$b_{\mathrm{A0}} \ \left[\mathrm{Pa}^{- u_i} ight]$	$E_{\rm A}$ [kJ mol ⁻¹]	$V_{\rm A}$	$q_{\mathrm{B,sat}}$ [mol kg ⁻¹]	$b_{ m B0} \ \left[{ m Pa}^{- u_i} ight]$	$E_{\rm B}$ [kJ mol ⁻¹]	$\nu_{\rm B}$	
CO ₂	3.5	3.64×10^{-13}	35	1	5.2	6.04×10^{-11}	35	1	
CH ₄	4	3.66×10^{-10}	14	1	5	3.75×10^{-9}	14	1	
H ₂	18	2.43×10^{-9}	6	1					

5

Table S8. 2-site Langmuir-Freundlich fit parameters for pure CO_2 , CH_4 and H_2 isotherms in LTA-5A zeolite. The fits for pure CO_2 , CH_4 are derived from re-fitting the experimental data at 303 K presented in Table 1 of Pakseresht et al..⁵ The isotherm fit for H_2 is based on the data presented in Figure 6 of Sircar and Golden,⁶ which was combined with Configurational-Bias Monte Carlo simulation data.

	$q_{\rm A,sat}$	b_{A}	$V_{\rm A}$	$q_{\mathrm{B,sat}}$	$b_{ m B}$	$V_{\rm B}$
	$[mol kg^{-1}]$	$[\operatorname{Pa}^{-\nu_i}]$		$[mol kg^{-1}]$	$[\operatorname{Pa}^{-\nu_i}]$	
CO ₂	1.84	1.89×10^{-4}	1.24	2.1	8.51×10^{-4}	0.64
CH ₄	2	5.77×10^{-6}	1			
H ₂	15	2.05×10^{-8}	1			

Table S9. Crystal data and structure refinement for UTSA-40.

Empirical formula	$C_{58}H_{74}Cl_2Cu_2N_6O_{20}$
Formula weight	1373.23
Temperature (K)	293(2)
Wavelength (Å)	1.54178
Crystal system, space group	Trigonal, R3 ₂
	a = 18.5676(7) Å
	b = 18.5676(7) Å
Unit call dimensions	c = 52.205(3) Å
Unit cell dimensions	$\alpha = 90^{\circ}$
	$\beta = 90^{\circ}$
	$\gamma = 120^{\circ}$
Volume ($Å^3$)	15586.8(12)
Z, Calculated density $(g \text{ cm}^{-3})$	9, 1.3165
Absorption coefficient (mm ⁻¹)	1.750
F(000)	3762
Crystal size (mm)	$0.41 \times 0.23 \times 0.15$
θ range for data collection (°)	4.36 to 67.51
Limiting indices	$-17 \le h \le 22, -17 \le k \le 19, -54 \le l \le 61$
Reflections collected / unique	$10908 / 5973 (R_{int} = 0.0386)$
Completeness to $\theta = 67.51^{\circ}$	98.2 %
Absorption correction	Analytical
Max. and min. transmission	0.7786 and 0.5329
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5973 / 72 / 186
Goodness-of-fit on F^2	0.975
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0715, wR_2 = 0.1895$
<i>R</i> indices (all data)	$R_1 = 0.0962, wR_2 = 0.2237$
Absolute structure parameter	0.12(10)
Largest diff. peak and hole (e Å ⁻³)	0.548 and -0.272
CCDC	896825

Table S10. Gas sorption in the reported copper-tetracarboxylate frameworks.

Ligands MOFs	BET (Langmuir) [m ² g ⁻¹]	$V_{\rm p}$ [cm ³ g ⁻¹]	$D_{\rm c}$ [g cm ⁻³]	H ₂	CH ₄ [cm ³ cm ⁻³]	CO ₂ [mmol g ⁻¹]	Ref
$\begin{array}{c} HO_2C & CO_2H \\ CI & CO_2H_5 \\ CI & CO_2H_5 \\ CI & CO_2H_5 \\ HO_2C & CO_2H \\ UTSA-40 \end{array}$	1630 (1661)	0.65	0.827	2.2%, 18.2 g/L (77 K/1 bar) ^a 4.6%, 38.1 g/L (77 K/60 bar) ^b 0.7%, 5.8 g/L (300 K/60 bar) ^b	156 ^b (134 ^a) (300 K/35 bar) 188 ^b (149 ^a) (300 K/60 bar)	12.7 (300 K/30 bar) ^b	This work
HO ₂ C CO ₂ H HO ₂ C CO ₂ H MOF-505 NOTT-100	1670	0.68	0.927	2.59%, 24.0 g/L (77 K/1 bar) ^b 4.02%, 37.3 g/L (77 K/20 bar) ^b			15, 16
$\begin{array}{c} HO_2C & \downarrow & CO_2H \\ & & & \\ & & & \\ HO_2C & & & CO_2H \\ & & & \\ HO_2C & & & CO_2H \\ & & & \\ PCN-10 \\ & & \\ JUC-62 \end{array}$	2850	1.00	0.77	2.87%, 22.0 g/L (77 K/1 atm) ^{<i>a</i>} 6.76%, 51.9 g/L (77 K/50 bar) ^{<i>b</i>} Q = 11.60 kJ mol ⁻¹			17, 18, 19
HO ₂ C CO ₂ H HO ₂ C CO ₂ H PCN-16	2273 (2800)	1.06	0.72	2.6%, 18.8 g/L (77 K/1 atm) ^a 4.9 wt%, 35.5 g/L (77 K/20 bar) ^a	175 (300 K/45 bar) ^a		20
HO ₂ C CO ₂ H HO ₂ C CO ₂ H PCN-16'	1760 (2200)	0.84	0.76	1.7%, 13.0 g/L (77 K/1 atm) ^a 2.9 wt%, 22.2 g/L (77 K/20 bar) ^a	97 (300 K/45 bar) ^a		20
HO ₂ C CO ₂ H HO ₂ C CO ₂ H HO ₂ C CO ₂ H PCN-46	2500 (2800)	1.012	0.62	1.95%, 12.1 g/L (77 K/1 atm) ^a 6.88%, 45.7 g/L (77 K/97 bar) ^b Q = 7.2 kJ mol ⁻¹	172 (298 K/35 bar) ^b	22.5 (298 K/ 30bar) ^b	21

				2 55% 10 1 g/I		
HO ₂ C HO ₂ C HOOC COOH PCN-11	1931 (2442)	0.91	0.749	$2.5576, 19.1 \text{ g/L}$ $(77 \text{ K/1 atm})^{a}$ $5.05\%, 37.8 \text{ g/L}$ $(77 \text{ K/20 bar})^{a}$ $5.97\%, 44.7 \text{ g/L}$ $(77 \text{ K/45 bar})^{b}$ $Q = 7 \text{ kJ mol}^{-1}$	171 (298 K/35 bar) ^{<i>a</i>} $Q = 14.6 \text{ kJ mol}^{-1}$	18
HO ₂ C HO ₂ C CO ₂ H PCN-14	1753 (2176)	0.87	0.871		230 ^b (290 K/35 bar)	22
HO ₂ C CO ₂ H HO ₂ C CO ₂ H NOTT-101	2247	0.886	0.650	2.52%, 16.4 g/L (77 K/1 bar) ^b 6.06%, 39.4 g/L (77 K/20 bar) 6.60%, 43.1 g/L (77 K/60 bar) ^b		16
HO ₂ C CO ₂ H	2932	1.138	0.587	2.24%, 13.1 g/L (77 K/1 atm) ^b 6.07%, 35.6 g/L (77 K/20 bar) ^b 7.20%, 42.3 g/L (77 K/60 bar) ^b Q = 5.70 kJ mol ⁻¹		16
HO ₂ C CO ₂ H	2929	1.142	0.643	2.63%, 16.9 g/L (77 K/1 bar) ^b 6.51%, 41.9 g/L (77 K/20 bar) ^b 7.78%, 50.0 g/L (77 K/60 bar) ^c		23
HO ₂ C F HO ₂ C NOTT-105	2386	0.898	0.730	2.52%, 18.4 g/L (77 K/1 bar) ^b 5.40%, 39.4 g/L (77 K/20 bar) ^b		23

HO ₂ C HO ₂ C CO ₂ H NOTT-106	1855	0.798	0.720	2.29%, 16.5 g/L (77 K/1 atm) ^b 4.50%, 32.4 g/L (77 K/20 bar) ^b			23
HO ₂ C CO ₂ H HO ₂ C CO ₂ H NOTT-107	1822	0.767	0.76	2.26%, 17.2 g/L (77 K/1 atm) ^b 4.46%, 33.8 g/L (77 K/20 bar) ^b			23
HO ₂ C CO ₂ H HO ₂ C CO ₂ H NOTT-109	1718	0.705	0.79	2.33%, 18.4 g/L (77 K/1 bar) ^b 4.15%, 32.8 g/L (77 K/20 bar) ^b			23
HO ₂ C HO ₂ C CO ₂ H NOTT-110	2960	1.22	0.61	2.64%, 16.1 g/L (77 K/1 atm) ^b 6.59%, 40.5 g/L (77 K/20 bar) ^b 7.62%, 46.8 g/L (77 K/55 bar) ^b Q = 5.68 kJ mol ⁻¹			24
HO ₂ C HO ₂ C CO ₂ H NOTT-111	2930	1.19	0.62	2.56%, 15.9 g/L $(77 \text{ K/1 atm})^{b}$ 6.48%, 40.0 g/L $(77 \text{ K/20 bar})^{b}$ 7.36%, 45.4 g/L $(77 \text{ K/48 bar})^{b}$ $Q = 6.21 \text{ kJ mol}^{-1}$			24
HO ₂ C N O N O N O HO ₂ C CO ₂ H HO ₂ C CO ₂ H SNU-50	2300 (2450)	1.08	0.65	2.10%, 13.6 g/L (77 K/1 atm) ^a 7.85%, 51.0 g/L (77 K/60 bar) ^b 0.97%, 6.3 g/L (298 K/60 bar) ^b Q = 7.1 kJ mol ⁻¹	155 (298 K/60 bar) ^b $Q = 26.8 \text{ kJ mol}^{-1}$	17.5 (298 K/55 bar) ^b	25

^{*a*} excess adsorption; ^{*b*} absolute adsorption

Reference:

- Herm, Z. R.; Swisher, J. A.; Smit, B.; Krishna, R.; Long, J. R. Metal-Organic Frameworks as Adsorbents for Hydrogen Purification and Pre-Combustion Carbon Dioxide Capture J. Am. Chem. Soc. 2011, 133, 5664-5667.
- (2) Krishna, R.; Long, J. R. Screening metal-organic frameworks by analysis of transient breakthrough of gas mixtures in a fixed bed adsorber, *J. Phys. Chem. C* 2011, *115*, 12941-12950.
- (3) Chowdhury, P.; Mekala, S.; Dreisbach, F.; Gumma, S. Adsorption of CO, CO₂ and CH₄ on
 ¹⁰ Cu-BTC and MIL-101 Metal Organic Frameworks: Effect of Open Metal Sites and Adsorbate Polarity, *Microporous Mesoporous Mater.* 2012, *152*, 246-252.
- (4) Wu, H.; Yao, K.; Zhu, Y.; Li, B.; Shi, Z.; Krishna, R.; Li, J. Cu-TDPAT, an *rht*-type Dual-Functional Metal–Organic Framework Offering Significant Potential for Use in H₂ and Natural Gas Purification Processes Operating at High Pressures, *J. Phys. Chem. C* 2012, *116*, 16609-16618.
- (5) Pakseresht, S.; Kazemeini, M.; Akbarnejad, M. M. Equilibrium isotherms for CO, CO₂, CH₄ and C₂H₄ on the 5A molecular sieve by a simple volumetric apparatus, *Sep. Purif. Technol.* **2002**, *28*, 53-60.

10

- (6) Sircar, S.; Golden, T. C. Purification of Hydrogen by Pressure Swing Adsorption, *Sep. Sci. and Technol.* **2000**, *35*, 667-687.
- (7) Mason, J. A.; Sumida, K.; Herm, Z. R.; Krishna, R.; Long, J. R. Evaluating Metal-Organic Frameworks for Post-Combustion Carbon Dioxide Capture via Temperature Swing Adsorption, *Energy Environ. Sci.* **2011**, *3*, 3030-3040.
- (8) He, Y.; Krishna, R.; Chen, B. Metal-Organic Frameworks with Potential for Energy-Efficient Adsorptive Separation of Light Hydrocarbons, *Energy Environ. Sci.* **2012**, *5*, 9107-9120.
- (9) Dietzel, P. D. C.; Besikiotis, V.; Blom, R. Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide, *J. Mater. Chem.* **2009**, *19*, 7362-7370.
- (10) Bao, Z.; Yu, L.; Ren, Q.; Lu, X.; Deng, S. Adsorption of CO₂ and CH₄ on a magnesium-based metal organic framework, *J. Colloid Interface Sci.* **2011**, *353*, 549-556.
- (11) Yaghi, O. M. Hydrogen Storage in Metal Organic Frameworks, <u>www.hydrogen.energy.gov/pdfs/review11/st049_yaghi_2011_p.pdf</u>, University of California Los
 Angeles, California, 2011.
 - (12) Latroche, M.; Surblé, S.; Serre, C.; Mellot-Draznieks, C.; Llewellyn, P. L.; Lee, J. H.; Chang, J. S.; Jhung, S. H.; Férey, G. Hydrogen Storage in the Giant-Pore Metal–Organic Frameworks MIL-100 and MIL-101, *Angew. Chem. Int. Ed.* **2006**, *45*, 8227-8231.
- (13) Belmabkhout, Y.; Pirngruber, G.; Jolimaitre, E.; Methivier, A. A complete experimental approach for synthesis gas separation studies using static gravimetric and column breakthrough experiments, *Adsorption* 2007, *13*, 341-349.
- (14) Cavenati, S.; Grande, C. A.; Rodrigues, A. E. Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures, J. Chem. Eng. Data 2004, 49, 1095-1101.
- ²⁵ (15) Chen, B.; Ockwig, N. W.; Millward, A. R.; Contreras, D. S.; Yaghi, O. M., High H₂ Adsorption in a Microporous Metal-Organic Framework with Open Metal Sites. *Angew. Chem. Int. Ed.* 2005, 44, 4745-4749.
- (16) Lin, X.; Jia, J.; Zhao, X.; Thomas, K. M.; Blake, A. J.; Walker, G. S.; Champness, N. R.; Hubberstey, P.; Schröder, M., High H₂ Adsorption by Coordination-Framework Materials. *Angew. Chem. Int. Ed.* 2006, *45*, 7358-7364.
- (17) Lee, Y.-G.; Moon, H. R.; Cheon, Y. E.; Suh, M. P., A Comparison of the H₂ Sorption Capacities of Isostructural Metal-Organic Frameworks With and Without Accessible Metal Sites: [{Zn₂(abtc)(dmf)₂}₃] and [{Cu₂(abtc)(dmf)₂}₃] versus [{Cu₂(abtc)}₃]. *Angew. Chem. Int. Ed.* 2008, *47*, 7741-7745.
- ³⁵ (18) Wang, X.-S.; Ma, S.; Rauch, K.; Simmons, J. M.; Yuan, D.; Wang, X.; Yildirim, T.; Cole, W. C.; López, J. J.; Meijere, A. d.; Zhou, H.-C., Metal-Organic Frameworks Based on Double-Bond-Coupled Di-Isophthalate Linkers with High Hydrogen and Methane Uptakes. *Chem. Mater.* 2008, 20, 3145-3152.

25

- (19) Xue, M.; Zhu, G.; Li, Y.; Zhao, X.; Jin, Z.; Kang, E.; Qiu, S., Structure, Hydrogen Storage, and Luminescence Properties of Three 3D Metal-Organic Frameworks with NbO and PtS Topologies. *Cryst. Growth Des.* 2008, *8*, 2478-2483.
- (20) Sun, D.; Ma, S.; Simmons, J. M.; Li, J.-R.; Yuan, D.; Zhou, H.-C., An unusual case of symmetry-preserving isomerism. *Chem. Commun.* **2010**, *46*, 1329-1331.
- (21) Zhao, D.; Yuan, D.; Yakovenko, A.; Zhou, H.-C., A NbO-type metal-organic framework derived from a polyyne-coupling di-isophthalate linker formed *in situ*. *Chem. Commun.* **2010**, *46*, 4196-4198.
- Ma, S.; Sun, D.; Simmons, J. M.; Collier, C. D.; Yuan, D.; Zhou, H.-C., Metal-Organic
 Framework from an Anthracene Derivative Containing Nanoscopic Cages Exhibiting High Methane Uptake. J. Am. Chem. Soc. 2008, 130, 1012-1016.
- (23) Lin, X.; Telepeni, I.; Blake, A. J.; Dailly, A.; Brown, C. M.; Simmons, J. M.; Zoppi, M.; Walker, G. S.; Thomas, K. M.; Mays, T. J.; Hubberstey, P.; Champness, N. R.; Schröder, M., High Capacity Hydrogen Adsorption in Cu(II) Tetracarboxylate Framework Materials: The Role of Pore Size, Ligand Functionalization, and Exposed Metal Sites. *J. Am. Chem. Soc.* 2009, *131*, 2159-2171.
 - (24) Yang, S.; Lin, X.; Dailly, A.; Blake, A. J.; Hubberstey, P.; Champness, N. R.; Schröder, M., Enhancement of H₂ Adsorption in Coordination Framework Materials by Use of Ligand Curvature. *Chem. Eur. J.* 2009, 15, 4829-4835.
- ²⁰ (25) Prasad, T. K.; Hong, D. H.; Suh, M. P., High Gas Sorption and Metal-Ion Exchange of Microporous Metal–Organic Frameworks with Incorporated Imide Groups. *Chem. Eur. J.* 2010, *16*, 14043-14050.
 - (26) Wang, X.-S.; Meng, L.; Cheng, Q.; Kim, C.; Wojtas, L.; Chrzanowski, M.; Chen, Y.-S.; Zhang, X. P.; Ma, S., Three-Dimensional Porous Metal-Metalloporphyrin Framework Consisting of Nanoscopic Polyhedral Cages. J. Am. Chem. Soc. 2011, 133, 16322-16325.
 - (27) Wang, X.-J.; Li, P.-Z.; Liu, L.; Zhang, Q.; Borah, P.; Wong, J. D.; Chan, X. X.; Rakesh, G.; Li, Y.; Zhao, Y., Significant gas uptake enhancement by post-exchange of zinc(II) with copper(II) within a metal-organic framework. *Chem. Commun.* **2012**, *48*, 10286-10288.
- (28) Matsunaga, S.; Endo, N.; Mori, W., Microporous Porphyrin-Based Metal Carboxylate Frameworks with Various Accessible Metal Sites: $[Cu_2(MDDCPP)] [M = Zn^{2+}, Ni^{2+}, Pd^{2+}, Mn^{3+}(NO_3), Ru^{2+}(CO)]$. *Eur. J. Inorg. Chem.* **2012**, 4885-4897.