Supporting Information

4-Chloro-3,5-Dinitropyrazole: A Precursor for Promising Insensitive Energetic Compounds

Chunlin He, Jiaheng Zhang, Damon A. Parrish and Jean'ne M. Shreeve* Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, United States Fax: (+1) 208-885-9146 E-mail: jshreeve@uidaho.edu

Caution: All of the nitrogen-rich compounds used are energetic materials and may explode under certain conditions. Appropriate safety precautions should be taken when preparing.

General Methods

Reagents were purchased from Aldrich and Acros Organics and were used as received. ¹H, and ¹³C spectra were recorded on a 300 MHz (Bruker AVANCE 300) nuclear magnetic resonance spectrometer operating at 300.13, and 75.48 MHz, respectively, and a 500 MHz (Bruker AVANCE 500) nuclear magnetic resonance spectrometer operating at 50.69 MHz for ¹⁵N spectra using DMSO-d₆ as solvent and locking solvent unless otherwise stated. Chemical sifts in ¹³C and ¹⁵N NMR spectra are reported relative to Me₄Si and MeNO₂, respectively. The melting and decomposition points were obtained on a differential scanning calorimeter (TA Instruments Co., model Q10) at a scan rate of 5 °C/min. IR spectra were recorded using KBr pellets for solids on a BIORAD model 3000 FTS spectrometer. Densities were determined at 25 °C by employing a Micromeritics AccuPyc 1330 gas pycnometer. Elemental analyses were carried out using an Exeter CE-440 elemental analyzer. The mass spectrum was performed using a Shimadzu GCMS-QP5050A mass spectrometer.

4-Chloro-3,5-dinitropyrazole (1): Prepared from pyrazole in two steps according to the literature.¹⁻³ A mixture of 3.4 g (50 mmols) pyrazole and 6.7 g (50 mmols) NCS in 100

mL CCl₄ was stirred at room temperature overnight, and the resulting solid was filtered off. The filtrate was washed with 2×20 mL water and dried with Na₂SO₄. After the solvent was removed, the remaining solid was purified by sublimation. 4-Chloropyrazole (4.62 g) was obtained as a colorless solid, and 8.2 g (80 mmols) was then dissolved in 15 mL 20% oleum with cooling. A mixture of 20 mL 100% HNO₃ in 25 mL 65% oleum was slowly added and the solution was maintained at 85 °C for 1 h. After cooling, the precipitate was collected by filtration and recrystallized from water. Compound **1** (14.9 g) was obtained as a white solid in an overall yield of 86%. ¹³C NMR (CD₃CN): δ 149.0; 103.1; *m/z*: 192 [M]⁺

General Procedure for 2, 6, 8 and 9: 0.97 g (5 mmol) of 1 and excess of N-nucleophile (50 mmol) was added to a 70 mL steel vessel, then closed and heated at 130 °C for a suitable time (for 2: 5h, 6 and 8: overnight). The mixture is poured into ice water after cooling. Compounds 6 and 8 are precipitated as salts. Compounds 2 and 9 were obtained by acidifying the aqueous solution to pH = 1; the resulting solid plus solution was filtered, and the solid remaining on the filter paper was washed with cold water (5 mL × 2), and air dried.

4-Methylamino-3, 5-dinitropyrazole (2):³ Orange solid, yield 72%. m.p.: 158 °C, *T*_{dec}: 194 °C, IR (KBr): 3539, 3422, 3379, 3360, 1619, 1524, 1476, 1427, 1377, 1350, 1294, 1040, 985, 841, 746, 722, 611 cm⁻¹; ¹H NMR: δ 3.0 (s, CH₃); 7.8 (br, NH), ¹³C NMR: δ 33.4; 129.6; 138.8; *m/z*: 187 [M]⁺.

Ammonium 4-amino-3, 5-dinitropyrazolate monohydrate (6): Orange needles, yield 80%. T_{dec} : 284 °C; IR (KBr): 3610, 1455, 3313, 3229, 2997, 2794, 1695, 1632, 1458, 1425, 1304, 1190, 1131, 931, 833, 758, 687, 532 cm⁻¹; ¹H NMR: δ 7.2 (s, NH₄⁺); 6.6 (s, NH₂), ¹³C NMR: δ 131.8; 143.1;. EA (C₃H₈N₆O₅, 208): Calcd, C: 17.31; H: 3.87; N: 40.38; Found, C: 17.39; H: 3.87; N: 40.79.

Guanidinium 4-guanidino-3, 5-dinitropyrazolate (**8**): Red solid, yield 53%. T_{dec} : 245 °C, IR (KBr): 3470, 3424, 3363, 3156, 1663, 1619, 1576, 1479, 1400, 1303, 1175, 1131, 1003, 880, 847, 619 cm⁻¹; ¹H NMR: δ 5.39 (br); 7.8 (br, NH), ¹³C NMR: δ 123.0; 148.7; 153.3; 157.9. EA (C₅H₁₀N₁₀O₄, 274): Calcd, C: 19.36; H: 4.55; N: 45.15; Found, C: 19.14; H: 4.59; N: 43.00.

2

4-Guanidino-3, 5-dinitropyrazole (9): Yellowish solid, yield: 75%. T_{dec} : 308 °C, IR (KBr): 3468, 3369, 3256, 3146, 2982, 2902, 1659, 1597, 1574, 1483, 1408, 1354, 1312, 1228, 1167, 1117, 1007, 847, 762, 648, 573 cm⁻¹; ¹H NMR: δ 7.45 (s); 9.37 (4, NH), ¹³C NMR: δ 107.6; 150.3; 156.5, ¹⁵N NMR: δ -18.8, -55.1; -301.6; -303.0; EA (C₄H₅N₇O₄, 215): Calcd, C: 22.33; H: 2.34; N: 45.58; Found, C: 21.95; H: 2.34; N: 44.73, *m/z*: 215 [M]⁺.

4-(**N**-methylnitramino)-3,5-dinitropyrazole (3): Using a modified procedure described in the literature.³ 1 mL 100% HNO₃ was added slowly to a cooled solution of 0.28g (1.5 mmol) of **2** in 3 mL of acetic acid; 0.5 mL acetic anhydride was then added and the mixture stirred for 1.5 h at room temperature. The excess acid was removed under vacuum leaving 0.34 g colourless solid which was pure based on elemental analysis, yield: 95%. m.p.: 157 °C; T_{dec} : 178 °C, IR (KBr): 3332, 1617, 1551, 1494, 1427, 1358, 1319, 1288, 1192, 1103, 1005, 945, 842, 758, 695, 664, 615, 509 cm⁻¹; ¹H NMR: δ 3.62 (s, CH₃); 11.8 (br, NH); ¹³C NMR: δ 40.4; 111.3; 147.7; EA (C₄H₄N₆O₆, 232): Calcd, C: 20.70; H: 1.74; N: 36.21; Found, C: 20.69; H: 1.75; N: 35.86; *m/z*: 186 [M - NO₂]⁺.

Ammonium 4-(N-methylnitramino)-3,5-dinitropyrazolate (4): Excess 20% aqueous ammonia was added to a solution of 0.3 g (1.3 mmol) of **3** in 5 mL ether; the reaction mixture was stirred for 30 min at r.t., and the solvent was removed under vacuum to obtain 0.31 g of **4**, yield: 96%. T_{dec} : 182 °C, IR (KBr): 3232, 3014, 2695, 1678, 1593, 1505, 1458, 1422, 1347, 1297, 1168, 1109, 959, 847, 752, 694, 661, 608 cm⁻¹; ¹H NMR: δ 3.65 (s, CH₃); 5.75 (br, NH₄⁺) ¹³C NMR: δ 41.2; 112.1; 150.6. EA (C₄H₇N₇O₆, 249): Calcd, C: 19.28; H: 2.83; N: 39.35; Found, C: 19.49; H: 2.85; N: 39.49;

N-Amino-4-(N-methylnitramino)-3,5-dinitropyrazole (**5**): 0.51g (2 mmol) freshly prepared tosylhydroxylamine^{4, 5} in dichloromethane was added to the solution of 0.4 g (1.6 mmole) of **4** in 20 mL CH₃CN. The mixture was stirred overnight; the solvent was removed and the residue was washed with ethyl acetate (15 mL × 3). The filtrate was evaporated and solid obtained was purified by chromatography (EtOAc: DCM=1:10), yield 0.27 g of **5** (68%). M.p. 86 °C, T_{dec} : 176 °C; IR (KBr): 3349, 3285, 1598, 1527, 1458, 1421, 1387, 1337, 1304, 1119, 1077, 984, 945, 883, 787, 733, 677cm⁻¹; ¹H NMR: 3.67 (s, CH₃); 8.12 (s, NH₂), ¹³C NMR 111.7; 135.7 ppm, ¹⁵N NMR: δ -27.27, -31.93, -

33.30, -86.15, -163.74, -221.60, -280.92; EA (C₄H₅N₇O₆, 247): Calcd, C: 18.76; H: 2.36; N: 38.28; Found: C: 19.05; H: 2.19; N: 38.56; *m/z*: 201 [M - NO₂]⁺.

1,4-Diamino-3,5-dinitropyrazole (**7**): Using a method similar to that for preparing **5**, but with **6**, yield: 52%, the product was purified by chromatography (EtOAc: DCM=1:30), crystals suitable for X-ray diffraction were grown from ethyl acetate. M.p. 195 °C, T_{dec} : 241 °C; IR (KBr): 3470, 3348, 3252, 1626, 1559, 1505, 1463, 1439, 1315, 1194, 911, 863, 822, 777, 662, 478 cm⁻¹; ¹H NMR: δ 7.24 (s, C-NH₂); 7.92 (br, N-NH₂), ¹³C NMR: δ 128.0; 130.2, 134.0, ¹⁵N NMR: δ -23.22, -28.83, -85.00, -166.54, -279.74, -314.53; EA (C₃H₄N₆O₄, 188): Calcd, C: 19.16; H: 2.14; N: 44.52; Found, C: 19.13; H: 2.08; N: 44.52; m/z: 188 [M]⁺.

1-(3,5-Dinitro-1H-pyrazol-4-yl)-3-nitroguanidine (10): 0.2 g (0.93 mmol) of **9** was slowly added to the mixture of 1 mL 98% H₂SO₄ and 0.5 mL 100% HNO₃ at 0 °C with stirring for 1 h and the solution was poured into 5 g ice water. The resulting white precipitate was filtered and air dried, yield 0.22 g (85%). T_{dec} : 236 °C, , IR (KBr): 3426, 3319, 3252, 3148, 3033,1656, 1621, 1537, 1504, 1468, 1422, 1344, 1266, 1206, 1055, 1008, 953, 841, 785, 754, 702, 675, 647, 579, 483 cm⁻¹; ¹H NMR: δ 8.48 (br); 9.61 (s), ¹³C NMR: δ 110.2; 145.8; 158.0, EA (C₄H₄N₈O₆, 260): Cacld, C: 18.47; H: 1.55; N: 43.08; Found, C: 17.89; H: 1.63; N: 41.76.

N-Methyl-4-chloro-3,5-dinitropyrazole (11): Prepared from 1 using the literature method.^{6 13}C NMR (CD₃CN): 148.1; 143.2; 105.9; 43.8, m/z: 206 [M]⁺.

N-Methyl-4-azido-3,5-dinitropyrazole (12): 0.13g (2 mmol) of NaN₃ was added in one portion to the solution of 0.21 g (1 mmol) 11 in 3 mL DMSO; the reaction mixture was stirred 4h at room temperature, and the mixture was poured into 10 g ice water. The precipitate formed was filtered, washed with 5 mL cold water and air dried to obtain 0.2 g pale yellow solid, yield, 92%. M.p.: 98 °C, T_{dec} : 161°C (dec); IR (KBr): 3426, 2137, 1585, 1547, 1511, 1444, 1376, 1332, 1261, 1055, 897, 762, 488 cm⁻¹; ¹H NMR: δ 4.24 (s); ¹³C NMR: δ 43.0; 116.7, 137.9, 144.0; EA (C₄H₃N₇O₄, 213): Calcd, C: 22.54; H: 1.42; N: 46.01; Found, C: 22.48; H: 1.43; N: 45.50; *m/z*: 213 [M]⁺.

N-Methyl-3-nitro-4-diazo-5-oxide pyrazole (13): 0.32 g (1.5 mmol) **12** in 6 mL acetic acid was heated at 100 °C for 48 h, and the product was purified by chromatography (DCM: Hexane= 10: 1). The crystals were grown from ethyl acetate. M.p. 127°C, T_{dec} :

228°C (dec), IR (KBr): 2155, 1697, 1499, 1444, 1369, 1341, 1271, 1068, 1016, 920, 793, 750, 702, 527 cm⁻¹; ¹H NMR (CD₃CN): δ 3.50 (s); ¹³C NMR (CD₃CN): δ 33.8, 129.9, 162.9, EA (C₄H₃N₅O₃, 169): Calcd, C: 28.41; H: 1.79; N: 41.42; Found, C: 28.44; H: 1.81; N: 41.08; *m/z*: 169 [M]⁺.

Hydrazinium 4-methyl-6-nitro-3-oxido-4H-pyrazolo[3,4-d][1,2,3]triazol-ide (14): 0.2 mL (4 mmol) hydrazine monohydrate was added to 0.2 g (0.97 mmol) of 12 in 10 mL ethanol. The mixture was stirred overnight at room temperature. The yellow precipitate was filtered and washed with 5 mL ethanol, and air dried to obtain 0.15 g 14, yield 71%. T_{dec} : 146°C (dec); IR (KBr): 3324, 3129, 3048, 2860, 2733, 2640, 1614, 1535, 1491, 1439, 1363, 1333,1271, 1229, 1153, 1085, 1034, 968, 818, 756, 602, 426 cm⁻¹; ¹H NMR: δ 4.02 (3H, s, CH₃), 7.23 (5H, br, N₂H₅⁺); ¹³C NMR: δ 37.0; 132.74, 137.1, 38.0; EA (C₄H₈N₈O₃, 216): Calcd, C: 22.23; H: 3.73; N: 51.84; Found, C: 22.16; H: 3.73; N: 51.67; *m/z*: 184.

4-Methyl-6-nitro-1,4-dihydropyrazolo[3,4-d][1,2,3]triazole 3-oxide (15): 0.22g (1 mmol) of **14** in 2 mL H₂O was treated with 10% HCl to pH = 1. The precipitate formed was collected by filtration to obtain a yellowish solid, yield 0.16 g (88%). T_{dec} : 101 °C (dec); IR (KBr): 3451, 2899, 2557, 2440, 1649, 1613, 1538, 1519, 1485, 1398, 1368, 1341, 1267, 1227, 1088, 1043, 968, 941, 816, 758, 623, 583, 462 cm⁻¹; ¹H NMR: δ 4.05 (3H, s, CH₃); EA (C₄H₆N₆O₄, 202): Calcd, C: 23.77; H: 2.99; N: 41.58; Found, C: 23.69; H: 2.95; N: 41.19; *m/z*: 184 [M]⁺.

N-Methyl-4-amino-3,5-dinitropyrazole (16): Orange solid obtained by a modified method;⁷ 1.05 g (5 mmol) of **11** and 4 mL of aqueous ammonia was heated at 130 °C overnight in a sealed vessel. After cooling, the solvent was removed by air, and a small amount of water (4 mL) was added. The product was collected by filtration, yield 0.64 g (68%). M.p. 159°C, T_{dec} : 270 °C; IR (KBr): 3470, 3360, 1635, 1566, 1475, 1434, 1392, 1345, 1310, 1113, 1043, 888, 830, 784, 754, 666, 619, 471 cm⁻¹; ¹H NMR (CDCl₃): 4.30 (s, CH₃); 6.32 (s, NH₂); ¹³C NMR (CDCl₃): 43.11; 129.3; 129.7; 131.0; EA (C₄H₅N₅O₄, 187): Calcd, C: 25.68; H: 2.69; N: 37.43; Found, C: 25.00; H: 2.69; N: 36.53; *m/z*: 187 [M]⁺;

N-methyl-3,4,5-trinitropyrazole (17): yellowish solid, prepared according to the literature method.⁸ 0.19 g (1 mmol) of **3** was added to 2.6 mL of conc. H_2SO_4 cooled by

ice bath, and then 1.3 mL of 30% H₂O₂ was added drop wise. The mixture was stirred at 0 °C for 3h and the reaction mixture was poured into 10 g ice water. The precipitate was separated by filtration to obtain 0.11g of **17**; the filtrate was extracted with ethyl acetate (10mL × 3) and dried by Na₂SO₄. After removal of the solvent by air, an additional 0.09 g of product was obtained. Yield: 86%. M.p. 90 °C, b.p. 265 °C; T_{dec} : 285 (dec), IR (KBr): 2889, 1539, 1479, 1448, 1339, 1294, 1163, 1103, 1053, 905, 845, 800, 777, 671, 610, 532, 473 cm⁻¹; ¹H NMR (CDCl₃): 4.40 (s, CH₃; ¹³C NMR (CDCl₃): 43.2; 123.5; 137.7; 143.0; EA (C₄H₃N₅O₆, 217): Cacld, C: 22.13; H: 1.39; N: 32.26; Found, C: 21.69; H: 1.46; N: 31.21. m/z: 217 [M]⁺.

- 1. Z. G. Zhao and Z. X. Wang, Synth. Commun., 2007, **37**, 137-147.
- 2. S. Ek, N. Latypov, P. Krumlinde, M. Knutsson and P. Goede, 42nd International Annual Conference of ICT, 2011, 15, 1-9.
- 3. I. L. Dalinger, I. A. Vatsadze, T. K. Shkineva, G. P. Popova and S. A. Shevelev, Synthesis, 2012, 44, 2058-2064.
- 4. T. M. Klapötke, D. G. Piercey and J. Stierstorfer, *Dalton Trans.*, 2012, **41**, 9451-9459.
- 5. E. E. Glover and K. T. Rowbottom, J. Chem. Soc. Perkin Trans. 1, 1976, 367-371.
- 6. I. L. Dalinger, I. A. Vatsadze, T. K. Shkineva, G. P. Popova and S. A. Shevelev, Mendeleev Commun., 2012, 22, 43-44.
- 7. M. D. Coburn, J. Heterocycl. Chem., 1971, 8, 153-154.
- 8. Y. Zhang, Y. Guo, Y.-H. Joo, D. A. Parrish and J. M. Shreeve, *Chem. Eur. J.*, 2010, 16, 10778-10784.

X-ray crystallography

Compound 7

Compound 13

Single-crystal X-ray Diffraction Analysis of compound 7 (CCDC 906540)

 $C_3H_4N_6O_4$, FW = 188.12, Orthorhombic, Pbca, a = 6.4359(4) Å, b= 12.7184(7) Å, c = 15.8769(10) Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 1299.59(14) Å³, Z = 8, $\rho_{calc} =$ 1.923 Mg/m³, $\mu = 0.175$ mm⁻¹, F(000) = 768, R₁ = 0.0286 for 1246 observed (I > 2 σ I) reflections and 0.0304 for all 1333 reflections, Goodness-of-fit = 1.063, 130 parameters.

An orange plate of dimensions 0.44 x 0.32 x 0.14 mm² was mounted on a MiteGen MicroMesh using a small amount of Cargille Immersion Oil. Data were collected on a Bruker three-circle platform diffractometer equipped with a SMART APEX II CCD detector. The crystals were irradiated using graphite monochromated MoK_{α} radiation ($\lambda = 0.71073$). An Oxford Cobra low temperature device was used to keep the crystals at a constant 150(2) K during data collection.

Data collection was performed and the unit cell was initially refined using *APEX2* [v2010.3-0].¹ Data reduction was performed using *SAINT* $[v7.68A]^2$ and *XPREP* $[v2008/2]^3$. Corrections were applied for Lorentz, polarization, and absorption effects using *SADABS* [v2008/1].⁴ The structure was solved and refined with the aid of the programs in the *SHELXTL-plus* [v2008/4] system of programs.⁵ The full-matrix least-squares refinement on F² included atomic coordinates and anisotropic thermal parameters for all non-H atoms. The H atoms were included using a riding model.

Single-crystal X-ray Diffraction Analysis of 13 (CCDC 906539).

 $C_4H_3N_5O_3$, FW = 169.11, Monoclinic, P2₁/n, a = 8.7709(12) Å, b= 5.7826(8) Å, c = 13.3180(18) Å, $\alpha = 90^\circ$, $\beta = 98.504(6)^\circ$, $\gamma = 90^\circ$, V = 668.04(16) Å³, Z = 4, $\rho_{calc} =$ 1.681 Mg/m³, $\mu = 0.146$ mm⁻¹, F(000) = 344, R₁ = 0.0422 for 804 observed (I > 2 σ I) reflections and 0.0989 for all 1375 reflections, Goodness-of-fit = 1.022, 110 parameters.

A yellow plate of dimensions $0.32 \times 0.08 \times 0.01 \text{ mm}^3$ was mounted on a MiteGen MicroMesh using a small amount of Cargille Immersion Oil. Data were collected on a Bruker three-circle platform diffractometer equipped with a SMART APEX II CCD detector. The crystals were irradiated using graphite monochromated MoK_{α} radiation ($\lambda = 0.71073$). An Oxford Cobra low temperature device was used to keep the crystals at a constant 293(2) K during data collection.

Data collection was performed and the unit cell was initially refined using *APEX2* [v2010.3-0].¹ Data Reduction was performed using *SAINT* $[v7.68A]^2$ and *XPREP* $[v2008/2]^3$. Corrections were applied for Lorentz, polarization, and absorption effects using *SADABS* [v2008/1].⁴ The structure was solved and refined with the aid of the programs in the *SHELXTL-plus* [v2008/4] system of programs.⁵ The full-matrix least-squares refinement on F² included atomic coordinates and anisotropic thermal parameters for all non-H atoms. The H atoms were included using a riding model.

- 1. Bruker (2010). APEX2 v2010.3-0. Bruker AXS Inc., Madison, Wisconsin, USA.
- 2. Bruker (2009). SAINT v7.68A. Bruker AXS Inc., Madison, Wisconsin, USA.
- 3. Bruker (2008). XPREP v2008/2. Bruker AXS Inc., Madison, Wisconsin, USA.
- 4. Bruker (2008). SADABS v2008/1, Bruker AXS Inc., Madison, Wisconsin, USA.
- 5. Bruker (2008). SHELXTL v2008/4. Bruker AXS Inc., Madison, Wisconsin, USA.

Table S1. Crystal data and structure refinement for 7 and 13.

	7	13
Empirical formula	$C_3H_4N_6O_4$	$C_4H_3N_5O_3$
Formula weight	188.12	169.11
Temperature	150(2) K	293(2) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	Orthorhombic	Monoclinic
Space group	Pbca	$P2_1/n$
Unit cell dimensions	$a = 6.4359(4) \text{ Å} = 90^{\circ}.$	$a = 8.7709(12) \text{ Å} a = 90^{\circ}.$
	$b = 12.7184(7) \text{ Å} = 90^{\circ}.$	$b = 5.7826(8) \text{ Å} b = 98.504(6)^{\circ}.$
	$c = 15.8769(10) \text{ Å} = 90^{\circ}.$	$c = 13.3180(18) \text{ Å} g = 90^{\circ}.$
Volume	$1299.59(14) \text{ Å}^3$	668.04(16) Å ³
Z	8	4
Density (-123°C)	1.923 Mg/m ³	1.681 Mg/m ³
Density (20°C)	1.874 Mg/m^3	
Absorption coefficient	0.175 mm ⁻¹	0.146 mm^{-1}
F(000)	768	344
Crystal size	0.44 x 0.32 x 0.14 mm ³	$0.32 \ge 0.08 \ge 0.01 \text{ mm}^3$
Theta range for data collection	2.57 to 26.53°.	2.61 to 26.55°.
Index ranges	-8<=h<=8, -15<=k<=15, -19<=l<=18	-10<=h<=10, -7<=k<=7, -16<=l<=15
Reflections collected	11406	6049
Independent reflections	1333 $[R_{int} = 0.0199]$	1375 $[R_{int} = 0.0482]$
Completeness to theta = 26.53°	99.5 %	98.8 %
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	0.9759 and 0.9269	0.9985 and 0.9549
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	1333 / 6 / 130	1375 / 0 / 110
Goodness-of-fit on F ²	1.063	1.022
Final R indices [I>2sigma(I)]	$R_1 = 0.0286, wR_2 = 0.0768$	$R_1 = 0.0422, wR_2 = 0.0848$
R indices (all data)	$R_1 = 0.0304, wR_2 = 0.0784$	$R_1 = 0.0989, wR_2 = 0.1037$
Largest diff. peak and hole	0.287 and -0.225 e.Å ⁻³	0.154 and -0.149 e.Å ⁻³
CCDC	906539	906540

Table S2.	Hydrogen	bonds	for 7	[Å and °]
1 abic 52.	inyurogen	oonus	101 /	[¹ and].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(6)-H(6A)O(8)#1	0.856(9)	2.405(12)	3.1591(14)	147.4(16)
N(6)-H(6B)O(12)#2	0.860(9)	2.443(14)	2.9920(13)	122.3(13)
N(10)-H(10A)O(9)	0.850(9)	2.293(15)	2.8235(15)	120.7(14)
N(10)-H(10B)O(12)	0.842(9)	2.300(15)	2.8147(15)	119.7(14)

Symmetry transformations used to generate equivalent atoms: #1 x,-y+3/2,z-1/2 #2 -x,y+1/2,-z+1/2

	0
Table S3.	Bond lengths [Å] and angles [°] for 7 and 13

7	Bond length	12	Bond length
1	[Å]	15	[Å]
N(1)-N(2)	1.3059(14)	N(1)-N(2)	1.363(2)
N(1)-C(5)	1.3758(15)	N(1)-C(5)	1.386(3)
N(1)-N(6)	1.3912(14)	N(1)-C(6)	1.451(3)
N(2)-C(3)	1.3534(15)	N(2)-C(3)	1.297(3)
C(3)-N(7)	1.4053(15)	C(3)-C(4)	1.407(3)
C(3)-C(4)	1.4074(16)	C(3)-N(7)	1.429(3)
C(4)-N(10)	1.3363(16)	C(4)-N(10)	1.323(3)
C(4)-C(5)	1.4028(17)	C(4)-C(5)	1.446(3)
C(5)-N(11)	1.3979(15)	C(5)-O(12)	1.218(2)
N(6)-H(6A)	0.856(9)	C(6)-H(6A)	0.9600
N(6)-H(6B)	0.860(9)	C(6)-H(6B)	0.9600
N(7)-O(8)	1.2373(14)	C(6)-H(6C)	0.9600
N(7)-O(9)	1.2416(13)	N(7)-O(8)	1.220(2)
N(10)-H(10A)	0.850(9)	N(7)-O(9)	1.224(2)
N(10)-H(10B)	0.842(9)	N(10)-N(11)	1.116(2)
N(11)-O(13)	1.2340(14)		
N(11)-O(12)	1.2404(14)		
7	angles [°]	13	angles [°]
N(2)-N(1)-C(5)	112.41(9)	N(2)-N(1)-C(5)	114.47(17)
N(2)-N(1)-N(6)	120.20(9)	N(2)-N(1)-C(6)	120.27(19)
C(5)-N(1)-N(6)	126.32(10)	C(5)-N(1)-C(6)	125.24(18)
N(1)-N(2)-C(3)	104.66(9)	C(3)-N(2)-N(1)	105.64(17)
N(2)-C(3)-N(7)	119.65(10)	N(2)-C(3)-C(4)	112.02(19)
N(2)-C(3)-C(4)	113.61(10)	N(2)-C(3)-N(7)	121.40(19)
N(7)-C(3)-C(4)	126.66(10)	C(4)-C(3)-N(7)	126.59(19)
N(10)-C(4)-C(5)	128.81(11)	N(10)-C(4)-C(3)	128.8(2)
N(10)-C(4)-C(3)	129.87(11)	N(10)-C(4)-C(5)	124.71(19)
C(5)-C(4)-C(3)	101.31(10)	C(3)-C(4)-C(5)	106.49(17)
N(1)-C(5)-N(11)	124.10(11)	O(12)-C(5)-N(1)	126.1(2)
N(1)-C(5)-C(4)	107.99(10)	O(12)-C(5)-C(4)	132.5(2)
N(11)-C(5)-C(4)	127.91(11)	N(1)-C(5)-C(4)	101.37(18)
N(1)-N(6)-H(6A)	108.1(12)	N(1)-C(6)-H(6A)	109.5
N(1)-N(6)-H(6B)	105.6(11)	N(1)-C(6)-H(6B)	109.5
H(6A)-N(6)-H(6B)	111.7(14)	H(6A)-C(6)-H(6B)	109.5
O(8)-N(7)-O(9)	123.55(10)	N(1)-C(6)-H(6C)	109.5
O(8)-N(7)-C(3)	119.68(10)	H(6A)-C(6)-H(6C)	109.5
O(9)-N(7)-C(3)	116.78(10)	H(6B)-C(6)-H(6C)	109.5
C(4)-N(10)-H(10A)	119.2(11)	O(8)-N(7)-O(9)	124.52(19)
C(4)-N(10)-H(10B)	119.9(12)	O(8)-N(7)-C(3)	119.46(19)
H(10A)-N(10)-H(10B)	119.7(16)	O(9)-N(7)-C(3)	116.0(2)
O(13)-N(11)-O(12)	124.25(10)	N(11)-N(10)-C(4)	177.7(2)
O(13)-N(11)-C(5)	119.70(10)		
O(12)-N(11)-C(5)	116.05(10)		

Entry	E ₀	ZPE	H _r	HOF [kJ/mol]
3	-932.3127103	0.122934	0.137988	137.0
4(anion)	-931.8181065	0.109339	0.124162	472.8
5	-987.5012822	0.139063	0.155599	220.7
7	-744.2440734	0.109627	0.121794	166.0
8(anion)	-836.9996673	0.119235	0.132653	491.0
9	-837.5020045	0.132976	0.146643	182.6
10	-1041.5729831	0.134501	0.150874	236.6
12	-744.2440734	0.109627	0.121794	436.0
13	-652.0221153	0.091789	0.105122	177.0
14(anion)	-706.6515601	0.096885	0.108238	549.6
15	-707.1647594	0.110579	0.122264	414.4
16	-728.2485174	0.121063	0.133433	64.5
17	-877.0963389	0.105894	0.119874	109.1

Table S4 Calculated (B3LYP/6-31+ $G^{**//}$ MP2/6-311++ G^{**}) total energy(E0), zero-point energy (*ZPE*), values of the correction (Hr), and heats of formation (HOF) of **3-17**

Scheme S1. Isodesmic reactions

¹H, ¹³C and ¹⁵N NMR Spectra

Figure S2

Figure S4

Figure S7

Figure S9

Figure S10

Figure S15

Figure S16

Figure S18

Figure S20

Figure S21

Figure S22

Figure S23

Figure S26

ppm 200 175 150 125 100 75 50 25 0

DSC Figures

Figure S31 DSC figure of compound 3

Figure S32 DSC figure of compound 4

Figure S33 DSC figure of compound 5

Figure S34 DSC figure of compound 7

Figure S35 DSC figure of compound 8

Figure S36 DSC figure of compound 9

Figure S37 DSC figure of compound 10

Figure S38 DSC figure of compound 12

Figure S39 DSC figure of compound 13

Figure S40 DSC figure of compound 14

Figure S41 DSC figure of compound 15

Figure S42 DSC figure of compound 16

Figure S43 DSC figure of compound 17