ELECTRONIC SUPPORTING INFORMATION

Flexible Lanthanide MOFs as Highly Selective and Reusable Liquid MeOH Sorbents

Constantinos G. Efthymiou,^a Eleni J. Kyprianidou,^a Constantinos J. Milios,^b Manolis J. Manos^{*c} and Anastasios J. Tasiopoulos^{*a}

^a Department of Chemistry, University of Cyprus, Nicosia, Cyprus, 1678. Fax: ++357-22-895451; Tel: ++357-22-892765; E-mail: atasio@ucy.ac.cy

^bDepartment of Chemistry, University of Crete, Voutes 71003, Heracleion, Greece;

^cDepartment of Chemistry, University of Ioannina, 45110 Ioannina, Greece; E-mail: emanos@cc.uoi.gr

Compound	UCY-4	UCY-5	UCY-5/MeOH	UCY-5/acetone	UCY-6	UCY-7	UCY-8
Chemical formula	$C_{22}H_{20}LaN_3O_8$	C22H20CeN3O8	$C_{69}H_{47}Ce_4N_4O_{32}$	C ₁₉ H ₁₄ CeNO ₉	$C_{22}H_{20}N_3O_8Pr$	$C_{41}H_{34}N_5O_{16}Sm_2$	$C_{19}H_{14}EuN_2O_8$
Formula Mass	593.32	594.53	2004.59	540.43	595.32	1153.45	550.28
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
<i>a</i> /Å	29.074(2)	29.049(2)	28.667(4)	33.657(2)	28.877(2)	28.808(2)	29.255(2)
b/Å	14.5356(5)	14.5685(6)	14.910(2)	14.2909(5)	14.3145(9)	14.3140(7)	12.699(2)
c/Å	13.5095(5)	13.5097(7)	12.013(2)	12.8304(9)	13.635(2)	13.5515(6)	14.260(2)
$\beta^{\prime\circ}$	100.097(5)	100.119(5)	106.27(2)	124.037(9)	99.644(9)	99.776(4)	97.522(8)
Unit cell volume/Å ³	5620.8(4)	5628.4(4)	4929(2)	5114.0(7)	5556.4(8)	5507.0(4)	5252.2(9)
Temperature/K	100(2)	100(2)	100(2)	100(2)	100(2)	100(2)	100(2)
Space group	C2/c	C2/c	C2/c	C2/c	C2/c	C2/c	C2/c
No. of formula units per unit cell, Z	8	8	2	8	8	4	8
Radiation type	ΜοΚα	ΜοΚα	CuKa	ΜοΚα	ΜοΚα	ΜοΚα	CuKa
Absorption coefficient, μ/mm^{-1}	1.563	1.661	14.585	1.821	1.797	2.173	17.439
No. of reflections measured	12896	14490	8129	19630	10719	13354	9887
No. of independent reflections	4946	5942	4364	5289	5458	5689	4665
R _{int}	0.0429	0.0359	0.0353	0.0372	0.0416	0.0326	0.0527
Final R_I values $(I > 2\sigma(I))^a$	0.0473	0.0575	0.0576	0.0409	0.0674	0.0461	0.0718
Final $wR(F^2)$ values $(I > 2\sigma(I))^b$	0.1438	0.1493	0.1666	0.1238	0.2086	0.1334	0.2025
Final R_I values (all data) ^a	0.0526	0.0723	0.0623	0.0471	0.0889	0.0609	0.0842
Final $wR(F^2)$ values (all data) ^b	0.1485	0.1567	0.1718	0.1283	0.2280	0.1414	0.2199
Goodness of fit on F^2	1.084	1.069	1.151	1.090	1.150	1.109	1.098

Table S1. Selected crystal data for UCY-4–UCY-8, UCY-5/MeOH and UCY-5/acetone

Compound	UCY-9	UCY-10	UCY-11	UCY-12
Chemical formula	$C_{82}H_{68}Gd_4N_{10}O_{32}$	$C_{19}H_{14}N_2O_8Tb \\$	$C_{19}H_{14}DyN_2O_8$	$C_{82}H_{68}Ho_4N_{10}O_{32}\\$
Formula Mass	2334.46	557.24	560.82	2365.18
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
a/Å	28.747(2)	29.157(2)	28.7897(8)	28.675(2)
<i>b</i> /Å	14.448(2)	13.090(2)	13.9077(7)	14.3540(7)
c/Å	13.3233(8)	13.9533(9)	13.6093(5)	13.347(2)
α'°	90.00	90.00	90.00	90.00
$\beta/^{\circ}$	99.760(7)	97.576(6)	99.074(3)	99.650(6)
$\gamma/^{\circ}$	90.00	90.00	90.00	90.00
Unit cell volume/Å ³	5453.5(6)	5279.1(7)	5380.9(4)	5415.8(6)
Temperature/K	100(2)	100(2)	100(2)	100(2)
Space group	C2/c	C2/c	C2/c	C2/c
No. of formula units per unit cell, Z	2	8	8	2
Radiation type	CuKa	ΜοΚα	ΜοΚα	ΜοΚα
Absorption coefficient, μ/mm^{-1}	16.095	2.717	2.814	2.962
No. of reflections measured	9376	13876	12896	18439
No. of independent reflections	4854	4650	4727	4749
R _{int}	0.0554	0.0531	0.0481	0.0475
Final R_I values $(I > 2\sigma(I))$	0.0750	0.0445	0.0855	0.0864
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.2065	0.1133	0.2660	0.2292
Final R_1 values (all data)	0.0877	0.0649	0.0990	0.0925
Final $wR(F^2)$ values (all data)	0.2199	0.1210	0.2738	0.2318
Goodness of fit on F^2	1.066	0.958	1.134	1.031

Table S2. Selected crystal data for compounds UCY-9 –UCY-12

 ${}^{a}R_{i}=\Sigma \|Fo| - |Fc|| / \Sigma |Fo| . {}^{b}wR(F^{2})=[\Sigma[w(F_{o}^{2} - F_{c}^{2})2] / \Sigma[wF_{o}^{2}]^{1/2}, w=1/[\sigma^{2}(F_{o}^{2}) + (m \bullet p)^{2} + n \bullet p], p=[max(F_{o}^{2}, 0) + 2F_{c}^{2}] / 3, and m and n are constants$

Fig. S1 Experimental and calculated PXRD patterns of UCY-2, UCY-4-UCY-12.

Fig. S2 Representation of the flu-3,6-C2/c topology of **UCY-2**, **UCY-4-UCY-12**. Pink and blue spheres represent the 6-c and 3-c nodes, respectively.

Fig. S3 Representation of the pore network of UCY-4.

Fig. S4 Plots of the cell parameters of UCY-4 (La), UCY-5 (Ce), UCY-6 (Pr), UCY-2 (Nd), UCY-7 (Sm), UCY-8 (Eu), UCY-9 (Gd), UCY-10 (Tb), UCY-11 (Dy) and UCY-12 (Ho) vs. the lanthanide ionic radii.

Thermal Stability data

Fig. S5 The TG (red)/DTG (dashed line) curves for compound UCY-4.

UCY-4: The initial losses occurring from 30-275 $^{\circ}$ C are due to the elimination of 4 H₂O and 4 DMF molecules (calculated loss = 28.9%; found = 28.8%). The following weight losses (47.5%), which end at ~ 716 $^{\circ}$ C, are attributed to the release of the CIP ligands (calculated loss: 49.1%).

Fig. S6 The TG (red)/DTG (dashed line) curves for compound UCY-5.

UCY-5: The initial losses occurring from 30-250 °C are assigned to the removal of 6 H₂O and 4 DMF molecules (calculated loss = 30.8 %; found = 30.9 %). The following weight losses (45.6 %), which end at ~ 456 °C, are due to the release of the CIP ligands (calculated loss: 47.7 %).

Fig. S7 The TG (red)/DTG (dashed line) curves for compound UCY-6.

UCY-6: The initial losses occur from 30-255°C and are ascribed to the elimination of 5.5 H₂O and 4 DMF molecules (calculated loss = 30.2%; found = 30.3%). The following weight losses (46.1%), which end at ~ 580 °C, are due to the release of the CIP ligands (calculated loss: 48.0%).

Fig. S8 The TG (red)/DTG (dashed line) curves for compound UCY-7.

UCY-7: The initial losses occurring from 30-214 °C are due to the elimination of 4 H₂O and 3 DMF molecules (calculated loss = 24.0 %; found = 24.1 %). The following weight losses (50.4 %), which end at ~ 650 °C, are attributed to the release of the CIP ligands (calculated loss: 51.2 %).

Fig. S9 The TG (red)/DTG (dashed line) curves for compound UCY-8.

UCY-8: The initial losses occurring from 30-300 °C are due to the elimination of 6.5 H₂O and 4 DMF molecules (calculated loss = 30.9 %; found = 30.7 %). The following weight losses (44.4 %), which end at ~ 653 °C, are attributed to the release of the CIP ligands (calculated loss: 46.5 %).

Fig. S10 The TG (red)/DTG (dashed line) curves for compound UCY-9.

UCY-9: The initial losses occurring from 30-253 $^{\circ}$ C are due to the elimination of 5.5 H₂O and 4 DMF molecules (calculated loss = 29.5 %; found = 29.2 %). The following weight losses (46.0

%), which end at ~ 650 $^{\circ}$ C, are attributed to the release of the CIP ligands (calculated loss: 46.5 %).

Fig. S11 The TG (red)/DTG (dashed line) curves for compound UCY-10.

UCY-10: The initial losses occurring from 30-240 °C are due to the elimination of 7.5 H₂O and 2 DMF molecules (calculated loss = 23.1 %; found = 23.0 %). The following weight losses (49.4 %), which end at ~ 600 °C, are attributed to the release of the CIP ligands (calculated loss: 50.9 %).

Fig. S12 The TG (red)/DTG (dashed line) curves for compound UCY-11.

UCY-11: The initial losses occurring from 30-235 $^{\circ}$ C are due to the elimination of 6H₂O and 3DMF molecules (calculated loss = 25.7 %; found = 25.9 %). The following weight losses (47.7 %), which end at ~ 647 $^{\circ}$ C, are attributed to the release of the CIP ligands (calculated loss: 48.8 %).

Fig. S13 The TG (red)/DTG (dashed line) curves for compound UCY-12.

UCY-12: The initial losses occurring from 30-233 $^{\circ}$ C are due to the elimination of 8 H₂O and 4 DMF molecules (calculated loss = 31,7 %; found = 31.5 %). The following weight losses (43.7 %), which end at ~ 640 $^{\circ}$ C, are attributed to the release of the CIP ligands (calculated loss: 44.7 %).

MeOH adsorption data

A. Data for the calculation of the sorption isotherm

Fig. S14 ¹H-NMR spectra in CD₃Cl of the supernatant liquids resulted from the reactions of UCY-5/dry with MeOH in various molar ratios (various equivalents of MeOH per mol of UCY-5/dry) for an adsorption time of ~12 h. The numbers under each peak represent the values of the peak integrals. In the initial solutions used (i.e. before the sorption process) the ratio of peak integrals was equal to 1. The exact quantities of the reactants in the various reactions performed are: x0.5 [MeOH (4.5 µL,3.56 mg,0.111 mmol,0.5 eq.), toluene (11.75 µL,10.25 mg,0.111 mmol), UCY-5/dry (0.1 g, 0.222 mmol) in 4mL CD₃Cl], x0.8 [MeOH (7.2 µL, 5.69 mg, 0.178 mmol, 0.8 eq.), toluene (18.8 µL,16.4 mg,0.178 mmol) and UCY-5/dry (0.1 g, 0.222 mmol) in 4mL CD₃Cl], x2 [MeOH (18 µL,14.22mg,0.444 mmol, 2 eq.), toluene (47 µL, 41.0 mg, 0.444 mmol) and UCY-5/dry (0.1 g, 0.222 mmol) in 4mL CD₃Cl], x2 [MeOH (18 µL,14.22mg,0.444 mmol, 2 eq.), toluene (47 µL, 41.0 mg, 0.555 mmol 2.5 eq.), toluene (58.75 µL/51.25 mg/0.555 mmol), UCY-5/dry (0.1 g, 0.222 mmol) in 4mL CD₃Cl], x3 [MeOH (27 µL,21.33 mg,0.666 mmol, 3

eq.), toluene (70.5 μL, 61.5 mg, 0.666 mmol) and UCY-5/dry (0.1 g, 0.222 mmol) in 4mL CD₃Cl] and *x3.5* [MeOH (31.5 μL, 24.89 mg, 0.777 mmol, 3.5 eq.), toluene (82.25 μL, 71.75 mg, 0.777 mmol) and UCY-5/dry (0.1 g, 0.222 mmol) in 4mL CD₃Cl].

The peaks at 2.35 ppm and 3.49 ppm correspond to the methyl groups of toluene and MeOH respectively. The concentrations of MeOH after the sorption processes were determined using as reference the toluene that is not absorbed by **UCY-5**/dry at these reaction conditions (i.e magnetic stirring at room temperature and atmospheric pressure) and thus its concentration remains unchanged after the treatment of the solution with **UCY-5**/dry. For each experiment, the initial concentrations of MeOH and toluene were equal (i.e. the ratio of the peak integrals for the methyl groups of toluene and MeOH were equal to 1 in the ¹H-NMR spectra of the initial solutions).

B. PXRD studies

Fig. S15 PXRD patterns of UCY-5 (pristine), UCY-5/dry, UCY-5/acetone and UCY-5/MeOH.

Fig. S16 PXRD patterns of **UCY-5**/MeOH prepared from original **UCY-5**/dry (**UCY-5**/MeOH 1st cycle), **UCY-5**/MeOH prepared from regenerated **UCY-5**/dry (**UCY-5**/MeOH 2nd cycle), **UCY-5**/acetone prepared from original **UCY-5**/dry (**UCY-5**/acetone 1st cycle) and **UCY-5**/acetone prepared from regenerated **UCY-5**/dry (**UCY-5**/acetone 2nd cycle).

C. Kinetic experiments

Fig. S17 ¹H-NMR spectra in CD₃Cl of aliquots taken at various adsorption times from suspensions containing equimolar initial amounts of MeOH (9 μ L/7.11 mg/0.222 mmol, 1 eq.), toluene (23. 5 μ L, 20.5mg, 0.222mmol) and UCY-5/dry (0.1 g, 0.222 mmol) in CD₃Cl (4mL). The numbers under each peak represent the values of the peak integrals.

Fig. S18 ¹H-NMR spectra in CD₃Cl of aliquots taken at various adsorption times from suspensions containing initial amounts of MeOH (18 μ L, 14.22mg, 0.444 mmol, 2 eq.), UCY-

5/dry (0.1 g, 0.222 mmol) and toluene (47 µL, 41.0 mg, 0.444 mmol) in 4mL CD₃Cl. The numbers under each peak represent the values of the peak integrals.

D. MeOH/EtOH selectivity experiments

Fig. S19 ¹H-NMR spectra in CD₃Cl of aliquots taken at various adsorption times from suspensions containing equimolar initial amounts of MeOH (9 μ L, 7.11 mg, 0.222 mmol, 1 eq.), EtOH (12.9 μ L, 10.2 mg, 0.222 mmol, 1 eq.), toluene (23. 5 μ L, 20.5mg, 0.222mmol), **UCY-5**/dry (0.1 g, 0.222 mmol) in 4mL CD₃Cl. The numbers under each peak represent the values of the peak integrals.

Fig. S20 ¹H-NMR spectra in CD₃Cl of aliquots taken at various adsorption times from suspensions containing initial amounts of MeOH (9 μ L, 7.11mg, 0.222mmol, 1 eq.), EtOH (25.8 μ L, 20.4mg, 0.444mmol, 2 eq.), toluene (23. 5 μ L, 20.5mg, 0.222mmol) and **UCY-5**/dry (0.1 g, 0.222 mmol) in 4mL CD₃Cl. The numbers under each peak represent the values of the peak integrals.