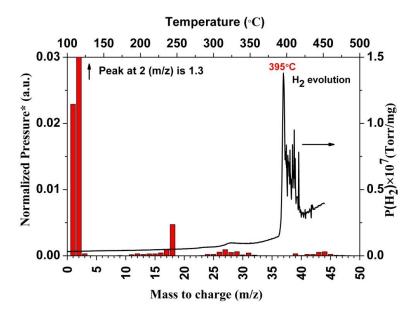
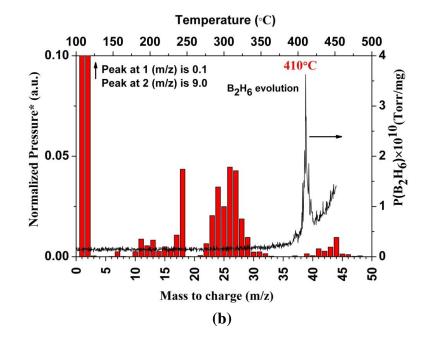
Supporting Information for

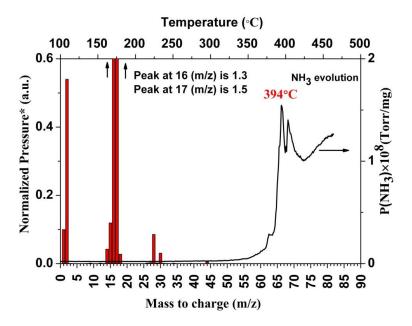

Tailoring the hydrogen storage properties of Li₄BN₃H₁₀ by confinement into

highly ordered nanoporous carbon


Xiangfeng Liu,^{1,2} David Peaslee,² and Eric H. Majzoub*²

¹Center for Nanoscience, and Department of Physics and Astronomy, University of Missouri-St. Louis, One University Blvd., St. Louis, MO 63121, USA

²College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 10049, P. R. China



(a)

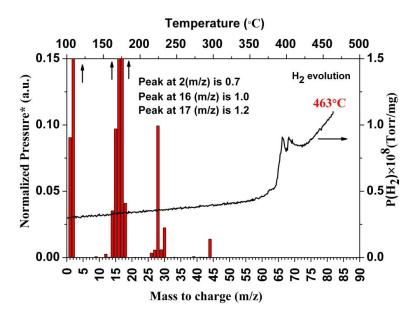
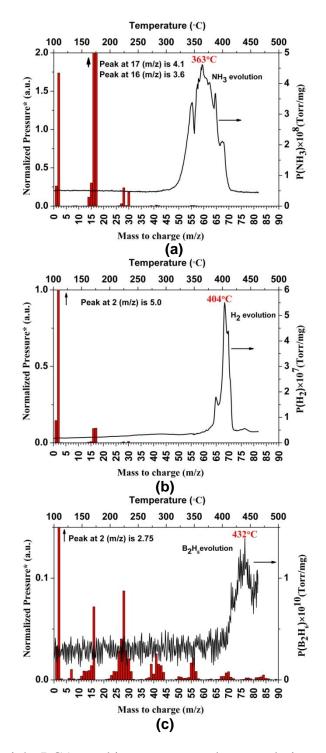
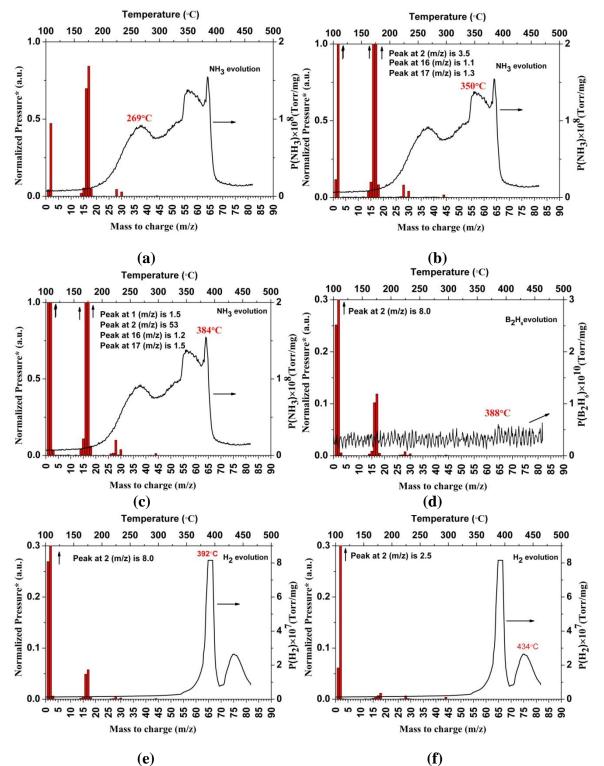


Fig. S1. Direct line-of-sight RGA cracking patterns and gas evolution of LiBH₄. (a) shows the evolution of H₂ (m/z=2) as well as the cracking pattern taken at 395°C; (b) shows the evolution of B₂H₆ (m/z=24) as well as the cracking pattern taken at 410°C.

*All mass spectra bar graphs have been background subtracted. All arbitrary units (a.u.) are with respect to the partial pressure of the corresponding gas evolution.



(a)



(b)

Fig. S2. Direct line-of-sight RGA cracking patterns and gas evolution of LiNH₂. (a) shows the evolution of NH₃ (m/z=17) as well as the cracking pattern taken at 394°C; (b) shows the evolution of H₂ (m/z=2) as well as the cracking pattern taken at 463°Cwhich is the near the maximum process temperature. The evolution of hydrogen continues beyond 475°C, but the peaks shown in the hydrogen curve more than likely are hydrogen release associated with the release of ammonia. Present in the ammonia and hydrogen cracking patterns are N₂H₂ (m/z = 28 and 30 at similar ratios).

Fig. S3. Direct line-of-sight RGA cracking patterns and gas evolution of $Li_4BN_3H_{10}$. (a) shows the evolution of NH₃ (m/z=17) as well as the cracking pattern taken at 363°C; (b) shows the evolution of H₂ (m/z=2) as well as the cracking pattern taken at 404°C; (c) shows the evolution of B₂H₆ (m/z=24) as well as the cracking pattern taken at 432°C. The evolution of triborane or larger species (possibly even nitrogen containing boranes such as BNH₂ or BNH₃, for example) is evident from the masses between m/z of 39-44 and groups centered at 56 and 69.

Fig. S4. Direct line-of-sight RGA cracking patterns and gas evolution of $Li_4BN_3H_{10}@NPC$. (a,b,c) shows the evolution of NH₃ (m/z=17) as well as the cracking pattern taken at the three peaks at 269°C, 350°C, 384°C respectively; (d) shows the evolution of B₂H₆ (m/z=24) as well as the cracking pattern taken at 388°C. This cracking pattern is absent any strong signal of triborane

or larger species, especially diborane; (e,f) shows the evolution of H_2 (m/z=2) as well as the cracking pattern taken at the peaks of 392°C and 434°C respectively.