

Supplementary information

Figure S1. The setup used in POLARIS is special in this experiment, because it can <u>control</u> temperature (T \approx 300-800 °C), <u>control pO_2</u> (in our case, it is Ar) and <u>control pD_2O</u> (by bubbling through a D₂O bath under controlled temperature, which then determines the *p*D₂O). In order to avoid condensation of water after the D₂O bath (leading to uncontrolled *p*D₂O), a heating cable surrounded the gas tubes from the D₂O bath until the cell. The image on the left shows the quartz cell with the Ca-doped LWO56.

Table S1. The microanalysis of the sintered bodies was measured by EPMA (electron probe microanalysis) using the same equipment as reference [5]. No significant deviation from the nominal cation ratio is measured:

Sample name (internal reference)	LWO 30.2A	O 30.2A LWO 31.3D	
	La/W	La/W	Ca/La
ratio average	5.65	5.49	0.0200
$2\sigma_{\rm st}(95\%)$	0.07	0.08	0.0010
ratio nominal	5.6	5.49	0.0206

Table S2. Clarification of the nomenclature and small description of the coordination environment of each cation in the $Fm\overline{3}m$ space group and $F\overline{4}3m$ space group:

atom	Wyckoff	surrounded	comments and descriptions
	position	by	
La1	(4 a)	01	relatively symmetric LaO ₈ cube
	(4 a)	O1a, O1b	
La2	(24d)	01, 02	distorted LaO ₈ cube
	(24g)	O1a , O1b	Links (La1) O_8 cubes with (W1) O_8 "cubes"
		O2a, O2b	
W1	(4b)	02	In average (by diffraction techniques) it can be represented as WO_8 "cubes", but the local structure reveals it is octabedral WO_6 disordered in space and
	(4b)	O2a, O2b	time, which average out as "cubes".
W2	(24d)	same as La2	This is the tungsten that dissolves in La2 sites (not in La1 sites) and can be written as W_{La} or more
	(24g)		specifically, W_{La2} or even $W2_{La2}$, to highlight where it sits.

Figure S2. (a) <u>High-symmetry averaged structural model</u> where the different polyhedra are drawn and the cation positions are highlighted (W2 can not be detected in the average diffraction techniques, because it can sit in 24 different positions, and can not be located with confidence). (b) A lower symmetry structural model calculated from DFT where the <u>local structure</u> of one possible configuration is drawn. The tungsten polyhedra are drawn, and the different tungsten positions (W1 and W2) are represented. Lanthanum polyhedra have not been drawn, for clarity.

Magrasó et al, supplementary information

Figure S3. Evolution of displacement parameters with temperature in $\frac{dry Ar}{dr}$ using the "simple model" (O2 in 32f position).

Figure S4. Evolution of Uij anisotropic displacement parameters with temperature in <u>dry Ar</u> using the "split model" with O2 in *96k* position. Dashed lines are guide to the eye.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is O The Royal Society of Chemistry 2013

Magrasó et al, supplementary information

Figure S5. Representation of the refined ADPs of oxygens bonded to tungsten in **a**) the "simple model" (O in 32f) and **b**) "split model" (O in 96k) at room temperature. Negative mean-square displacements for oxygens in the simple (not split) model are represented by cuboids.

Figure S6. (a) This is the crystal structural model of $La_{28-x}W_{4+x}O_{54+3x/2}$ used in the final Rietveld refinements. This is comparable to the model obtained independently from the averaged DFT model (b) with relaxed oxygen positions, which generates 3 equivalent O positions around each cube corner.

Table S3. La–O distances in dry and wet argon atmosphere at selected temperatures.

Dry Ar

T (°C)	La1—O1(×8)	La2—O1(×4)	La2—O2(×4)	La2—O2(×8)
150	2.5926 (16)	2.3696 (4)	2.313 (3)	2.890 (3)
450	2.6059 (17)	2.3754 (4)	2.329 (3)	2.907 (3)
750	2.6182 (19)	2.3832 (5)	2.369 (6)	2.917 (4)

Wet Ar

T (°C)	La1—O1(×8)	La2—O1(×4)	La2—O2(×4)	La2—O2(×8)
150	2.5939 (17)	2.3723 (4)	2.310 (3)	2.895 (3)
450	2.6060 (18)	2.3788 (5)	2.325 (3)	2.912 (3)
750	2.619 (2)	2.3848 (5)	2.360 (5)	2.929 (4)

Figure S7. Representative ND diffractograms recorded under wet (bubbling through D_2O) and "dry" (no bubbling through D_2O) at 500 °C for both Ca-doped and undoped LWO56. It shows that there is essentially no difference between the different conditions and doping levels.

Table S4. Atomic coordinates and displacement parameters at <u>150°C, dry Ar</u>. Lattice parameter: a = 11.183(1) Å

Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

Tractional atomic coordinates and equivalent isotropic displacement parameters (11)								
Atom	x	у	Z.	Ueq	Occ.(<1)			
Lal	0.0	0.0	0.0	0.02016				
La2	0.0	0.25	0.25	0.0348	0.95			
W1	0.5	0.5	0.5	0.01206				
01	0.13385(8)	0.13385(8)	0.13385(8)	0.02372				
O2	0.4374(3)	0.38938(15)	0.38938(15)	0.02259	0.193(5)			
W2	0.0	0.25	0.25	0.15794	0.05			

Atomic displacement parameters (\AA^2)

Thomas displacement parameters (11)									
Atom	<i>U</i> 11	U22	<i>U</i> 33	<i>U</i> 12	<i>U</i> 13	U23			
La1	0.0202(6)	0.0202(6)	0.0202(6)	0.0	0.0	0.0			
La2	0.0124(10)	0.0460(7)	0.0460(7)	0.0	0.0	-0.0316(8)			
W1	0.0121(8)	0.0121(8)	0.0121(8)	0.0	0.0	0.0			
01	0.0237(4)	0.0237(4)	0.0237(4)	0.0042(4)	0.0042(4)	0.0042(4)			
O2	0.049(3)	0.0094(12)	0.0094(12)	-0.0158(10)	-0.0158(10)	-0.0087(9)			
W2	-0.0436(18)	0.26(8)	0.26(8)	0.0	0.0	-0.25(8)			
$\alpha^2 = 5.108 P$	$x^2 = 5.109$ Bp = 0.022 Bur = 0.014 Born = 0.006 for 56 permeters								

 $\chi^2 = 5.108$, Rp = 0.022, Rwp = 0.014, Rexp = 0.006 for 56 parameters

Table S5: Atomic coordinates and displacement parameters at <u>450 °C, dry Ar</u>. Lattice parameter: a = 11.217(1) Å

Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

Tractional along containances and equivalent isotropic displacement parameters (11)								
Atom	x	у	z	Ueq	Occ.(<1)			
Lal	0.0	0.0	0.0	0.02372				
La2	0.0	0.25	0.25	0.03739	0.95			
W1	0.5	0.5	0.5	0.01814				
01	0.13412(9)	0.13412(9)	0.13412(9)	0.03176				
O2	0.4383(4)	0.39018(17)	0.39018(17)	0.04255	0.213(5)			
W2	0.0	0.25	0.25	0.06371	0.05			

Atomic displacement parameters $(Å^2)$

1	1					
Atom	<i>U</i> 11	U22	<i>U</i> 33	<i>U</i> 12	<i>U</i> 13	<i>U</i> 23
La1	0.0237(6)	0.0237(6)	0.0237(6)	0.0	0.0	0.0
La2	0.0194(10)	0.0464(7)	0.0464(7)	0.0	0.0	-0.0294(9)
W1	0.0181(9)	0.0181(9)	0.0181(9)	0.0	0.0	0.0
O1	0.03176(28)	0.03176(28)	0.03176(28)	0.0071(4)	0.0071(4)	0.0071(4)
O2	0.078(3)	0.0250(16)	0.0250(16)	-0.0188(13)	-0.0188(13)	-0.0150(11)
W2	-0.0419(16)	0.12(4)	0.12(4)	0.0	0.0	-0.10(4)
$x^2 - 1.716$	$P_{\rm m} = 0.022 P_{\rm m}$	-0.011 Povr	-0.009 for 56	noromotoro		

 $\chi^2 = 1.716$, Rp = 0.022, Rwp = 0.011, Rexp = 0.008 for 56 parameters

Table S6. Atomic coordinates and displacement parameters at <u>750°C, dry Ar</u>. Lattice parameter: a = 11.258(1) Å

Fractional atomic coordinates and equivalent isotropic displacement parameters (A^{-})								
Atom x y	v	z	Ueq	Occ.(<1)				
La1 0.0 0	0.0	0.0	0.0277					
La2 0.0 0).25	0.25	0.04148	0.95				
W1 0.5 0).5	0.5	0.02594					
O1 0.13427(10) 0	0.13427(10)	0.13427(10)	0.04014					
O2 0.4378(6) 0).3922(3)	0.3922(3)	0.08367	0.250(6)				
W2 0.0 0	0.25	0.25	0.05837	0.05				

Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters (\AA^2)

1	1					
Atom	<i>U</i> 11	U22	<i>U</i> 33	<i>U</i> 12	<i>U</i> 13	U23
Lal	0.0277(6)	0.0277(6)	0.0277(6)	0.0	0.0	0.0
La2	0.0256(11)	0.0494(9)	0.0494(9)	0.0	0.0	-0.0266(10)
W1	0.0259(11)	0.0259(11)	0.0259(11)	0.0	0.0	0.0
01	0.04014(31)	0.04014(31)	0.04014(31)	0.0100(5)	0.0100(5)	0.0100(5)
O2	0.145(8)	0.053(3)	0.053(3)	-0.029(3)	-0.029(3)	-0.0261(15)
W2	-0.037(3)	0.11(4)	0.11(4)	0.0	0.0	-0.10(4)
x^2 1 102 D	- 0.010 D	- 0.000 Daw	0.000 for 50			

 $\chi^2 = 1.103$, Rp = 0.018, Rwp = 0.009, Rexp = 0.008 for 56 parameters

Table S7. Atomic coordinates and displacement parameters at <u>150°C, wet Ar</u>. Lattice parameter: a = 11.194(1) Å

Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

Atom	x	у	Z.	Ueq	Occ.(<1)
La1	0.0	0.0	0.0	0.01993	
La2	0.0	0.25	0.25	0.03633	0.95
W1	0.5	0.5	0.5	0.01134	
01	0.13378(9)	0.13378(9)	0.13378(9)	0.02346	
O2	0.4377(3)	0.38912(16)	0.38912(16)	0.02247	0.188(5)
W2	0.0	0.25	0.25	0.20251	0.05

Atomic displacement parameters (\AA^2)

		· · ·					
Atom	<i>U</i> 11	U22	<i>U</i> 33	<i>U</i> 12	<i>U</i> 13	<i>U</i> 23	
La1	0.0199(7)	0.0199(7)	0.0199(7)	0.0	0.0	0.0	
La2	0.0124(11)	0.0483(8)	0.0483(8)	0.0	0.0	-0.0340(9)	
W1	0.0113(8)	0.0113(8)	0.0113(8)	0.0	0.0	0.0	
01	0.0235(4)	0.0235(4)	0.0235(4)	0.0047(4)	0.0047(4)	0.0047(4)	
O2	0.050(3)	0.0089(13)	0.0089(13)	-0.0178(11)	-0.0178(11)	-0.0101(9)	
W2	-0.0449(19)	0.33(10)	0.33(10)	0.0	0.0	-0.31(10)	
2 0 C10 D	0.000 D	0.014 D	0.000 6 5	· ·			7

 $\chi^2 = 3.610, Rp = 0.023, Rwp = 0.014, Rexp = 0.008$ for 56 parameters

Table S8. Atomic coordinates and displacement parameters at 450°C, wet Ar. Lattice parameter: a = 11.230(1) Å

Fractional atomic coordinates and equivalent isotropic displacement parameters (A^2)							
Atom	x	у	Z.	Ueq	Occ.(<1)		
La1	0.0	0.0	0.0	0.0248			
La2	0.0	0.25	0.25	0.04099	0.95		
W1	0.5	0.5	0.5	0.01765			
01	0.13398(9)	0.13398(9)	0.13398(9)	0.03218			
O2	0.4386(4)	0.38983(17)	0.38983(17)	0.04054	0.205(5)		
W2	0.0	0.25	0.25	0.04761	0.05		

. ...1 . • • (22)

Atomic displacement parameters (\AA^2)

r ··	$\mathbf{r} = \mathbf{r} + $							
Atom	<i>U</i> 11	U22	<i>U</i> 33	<i>U</i> 12	<i>U</i> 13	<i>U</i> 23		
La1	0.0248(6)	0.0248(6)	0.0248(6)	0.0	0.0	0.0		
La2	0.0217(11)	0.0506(9)	0.0506(9)	0.0	0.0	-0.0328(11)		
W1	0.0176(9)	0.0176(9)	0.0176(9)	0.0	0.0	0.0		
01	0.03218(30)	0.03218(30)	0.03218(30)	0.0077(4)	0.0077(4)	0.0077(4)		
O2	0.077(4)	0.0222(17)	0.0222(17)	-0.0198(13)	-0.0198(13)	-0.0157(11)		
W2	-0.039(2)	0.09(4)	0.09(4)	0.0	0.0	-0.08(4)		
$x^2 = 1.716$ Bp = 0.022 Byp = 0.011 Boyp = 0.008 for 56 periodeters								

 $\chi^2 = 1.716$, Rp = 0.022, Rwp = 0.011, Rexp = 0.008 for 56 parameters

Table S9. Atomic coordinates and displacement parameters at 750°C, wet Ar. Lattice parameter: a = 11.230(1) Å

Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

Atom	x	У	Z.	Ueq	Occ.(<1)
Lal	0.0	0.0	0.0	0.02873	
La2	0.0	0.25	0.25	0.04222	0.95
W1	0.5	0.5	0.5	0.02641	
01	0.13423(10)	0.13423(10)	0.13423(10)	0.03985	
O2	0.4392(5)	0.3918(3)	0.3918(3)	0.08536	0.270(6)
W2	0.0	0.25	0.25	0.04907	0.05

Atomic displacement parameters (\AA^2)

	-					
Atom	<i>U</i> 11	U22	<i>U</i> 33	<i>U</i> 12	<i>U</i> 13	U23
La1	0.0287(7)	0.0287(7)	0.0287(7)	0.0	0.0	0.0
La2	0.0270(12)	0.0498(10)	0.0498(10)	0.0	0.0	-0.0274(10)
W1	0.0264(12)	0.0264(12)	0.0264(12)	0.0	0.0	0.0
01	0.03985(33)	0.03985(33)	0.03985(33)	0.0093(5)	0.0093(5)	0.0093(5)
O2	0.150(8)	0.053(3)	0.053(3)	-0.024(3)	-0.024(3)	-0.0286(15)
W2	-0.037(3)	0.09(4)	0.09(4)	0.0	0.0	-0.09(4)
² 1 100 D	0.010 D	0.000 D				

 $\chi^2 = 1.188$, Rp = 0.019, Rwp = 0.009, Rexp = 0.008 for 56 parameters