Facile Synthesis of Manganese Oxide/Aligned Carbon Nanotubes over Aluminium Foil as 3D Binder Free Cathodes for Lithium Ion Batteries

Fengliu Lou,[§] Haitao Zhou,[‡] Fan Huang,[§] Fride Vullum-Bruer,[‡] Trung Dung Tran[†]

De Chen^{§, *}

§Department of Chemical Engineering, ‡Department of Materials Science and Engineering,

†Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim,

Norway

E-mail: chen@nt.ntnu.no

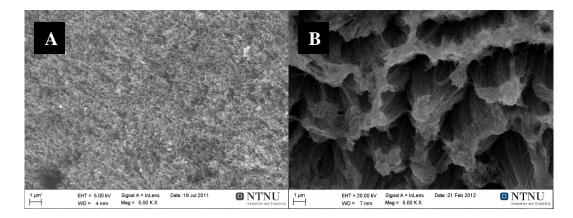


Figure S1 Top view of ACNT (A) and MCA-3-200 (B).

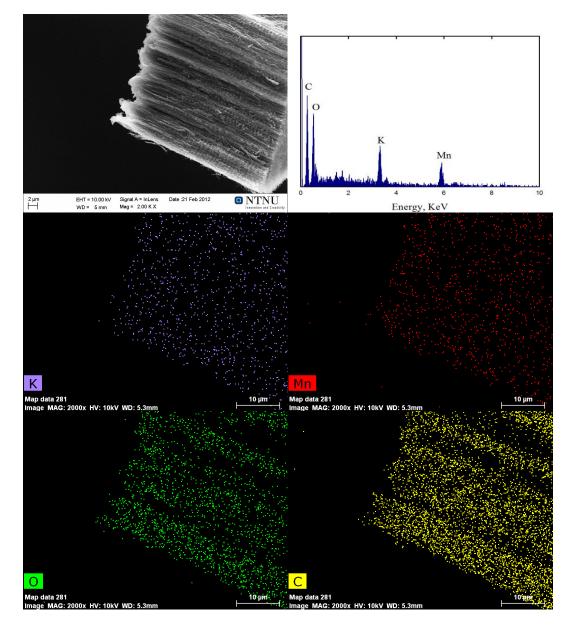


Figure S2 EDS and elemental mapping of MCA-3.

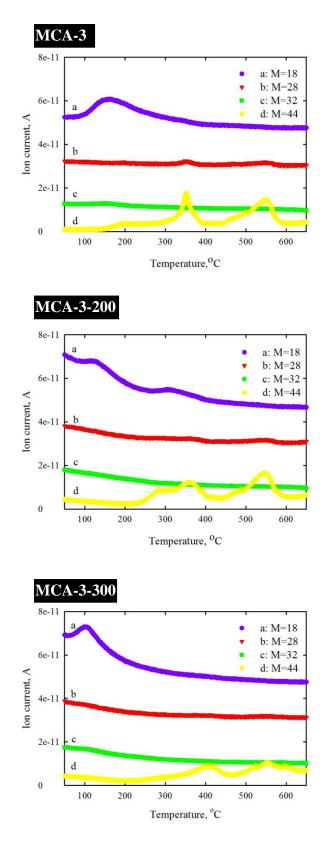
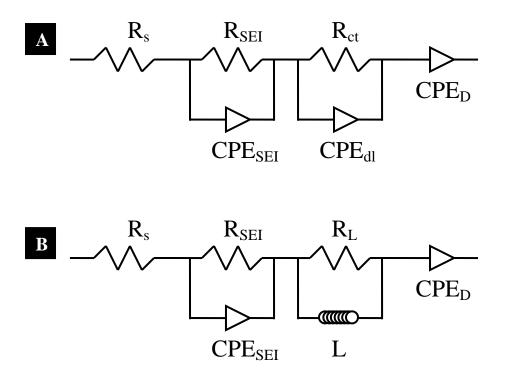



Figure S3 Mass spectra when the samples were analyzed by TG.

Sample	Surface area, $m^2 g^{-1}$	Pore Volume, $cm^3 g^{-1}$	Average size, Å	pore
ACNT	130.2	0.324	95.1	
MCA-3	85.2	0.179	122.3	
MCA-3-200	52.9	0.155	144.1	
MCA-3-300	44.3	0.112	200.5	

 Table S1 Textual properties of the as synthesized namomaterials.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

Figure S4 Equivalent circuit I (A). It consists of ohmic (R_s), SEI film (R_{SEI}) and charge transfer (R_{ct}) resistances, the SEI (CPE_{SEI}) and double layer (CPE_{dl}) capacitance, along with a diffusion component (CPE_D). Equivalent circuit II (B). It consists of ohmic (R_s) and SEI film (R_{SEI}) resistances, the SEI (CPE_{SEI}) capacitance, the parallel inductance (L) and resistance (R_L) along with a diffusion component (CPE_D).

DOD		10%	20%	40%	60%
R_s, Ω		2.7	2.5	2.6	3.1
CPE _{SEI} ^[a]	Y ₀ , F	2.8E-7	3.6E-7	4.9E-7	3.4E-7
	n	0.99	0.98	0.95	1
R_{SEI}, Ω		3.8	4.0	4.3	3.6
CPE _{dl} ^[a]	Y ₀ , F	0.00027	0.00033	0.00029	0.00022
	n	0.73	0.70	0.71	0.66
R_{ct}, Ω		4.0	4.2	7.1	19.6
CPE _D ^[a]	Y ₀ , F	0.14	0.13	0.086	0.042
	n	0.81	0.81	0.79	0.75

Table S2 The equivalent circuit parameters obtained from simulation of EIS experimental data of MCA-3 at various DOD by using equivalent circuit I.

[a] Y_0 and n were evaluated from the equation $Z_{CPE}=Y_0^{-1}*(j\omega)^{-n}$.

DOD	10%	20%	40%	60%
R_s, Ω	2.7	3.0	3.0	3.0
Y_0, F	3.2E-7	2.3E-7	8.7E-7	6.4E-7
$CPE_{SEI}^{[a]} - \frac{10, 1}{n}$	0.88	0.90	0.79	0.82
R_{SEI}, Ω	10.8	10.9	18.8	16.7
L, H or Y_0 , F	6.8E-5	5.5E-5	0.00033	0.00010
$CPE_{dl}^{[a]}$ n	_		0.55	0.57
R_L or R_{ct} , Ω	2.7	2.5	11.4	38.7
$CPE_{D}^{[a]}$ Y_0, F	0.079	0.075	0.034	0.022
CPE _D ^{est} n	0.73	0.73	0.64	0.55

Table S3 The equivalent circuit parameters obtained from simulation of EIS experimental data of MCA-3-200 at various DOD by using equivalent circuit I when DOD is 10% and 20%, and using and equivalent circuit II when DOD is 40% and 60%.

[a] Y_0 and n were evaluated from the equation $Z_{CPE}=Y_0^{-1}*(j\omega)^{-n}$.

DOD		5th	20th	100th
R _s , Ω		2.6	2.7	3.7
CPE _{SEI} ^[a]	Y ₀ , F	4.9E-7	8.1E-7	6.4E-7
	n	0.95	0.88	0.89
R_{SEI}, Ω		4.3	41.9	53.2
CPE _{dl} ^[a]	Y ₀ , F	0.00029	0.00042	0.00017
	n	0.71	0.95	0.66
R_{ct}, Ω		7.1	9.5	18.6
CPE _D ^[a]	Y ₀ , F	0.086	0.057	0.042
	n	0.79	0.70	0.74

Table S4 The equivalent circuit parameters obtained from simulation of EIS experimental data of MCA-3 after various cycles by using equivalent circuit I.

[a] Y_0 and n were evaluated from the equation $Z_{CPE}=Y_0^{-1}*(j\omega)^{-n}$.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is The Royal Society of Chemistry 2013

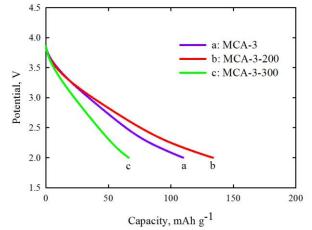


Figure S5 Discharge profiles of MCA at 1 C after 100 cycles.

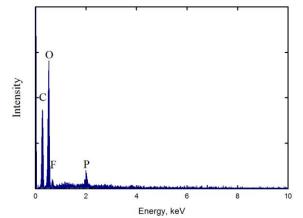


Figure S6 EDS of lithium foil after 100 cycles.