Supplementary Information

Facile Growth of Aligned WO₃ Nanorods on FTO Substrate for

Enhanced Photoanodic Water Oxidation Activity

ShankaraSharanappa. Kalanur, Yun Jeong Hwang, Sang YounChae, and Oh Shim Joo*

Clean Energy Research Centre, Korea Institute of Science and Technology, Seoul 130-

650, Republic of Korea.

Fig. S1. FTIR spectra of hydrated and anhydrous WO₃.

Fig. S2. SEM image of WO₃nanorod arrays grown on FTO at (a) 120 °C for 14 hours, (b) 160 °C for 4 hours and (c) 200 °C for 2 hours.

Fig. S3. XRD pattern of $WO_3 \cdot H_2O$ synthesized from tungstic acid.

Fig. S4. SEM images of hydrothermally synthesized WO_3 from tungstic acid in presence of FTO. Inset shows bare FTO surface (top left) and high resolution image of WO_3 on FTO (top right).

Fig. S5. Structure of Type I (a) and Type II (b) [WO₆] octahedra.

Fig. S6. Plot of $(\alpha hv)^{1/2}$ versus hv.

Fig. S7. (a) Plot of photocurrent density versus amount of HCl used in the preparation WO₃ nanorod arrays. (b) Plot of photocurrent density and film thickness of annealed WO₃ nanorod arrays versus hydrothermal reaction time.