
Supporting Information

Binder-free α -MoO₃ nanobelt electrode for lithium-ion batteries utilizing van der Waals force for film formation and connection with current collector

Yixin Sun, Jie Wang, Bote Zhao, Rui Cai, Ran Ran, Zongping Shao*

Supplementary Figures

Fig. S1 (a) The charge/discharge curves for the initial four cycles at the current density of 50 mA g^{-1} of the MoO₃ contrast electrodes through the conventional route between 3.0 and 0.01 V, (b) cycling performance of the MoO₃ contrast electrodes through the conventional route with 20 cycles between 0.01 and 3.0 V at the current densities of 100, 200, 500, 1000 and 2000 mA g^{-1} , respectively.

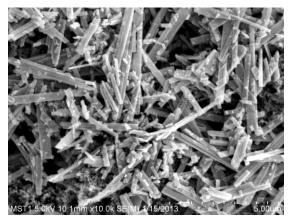
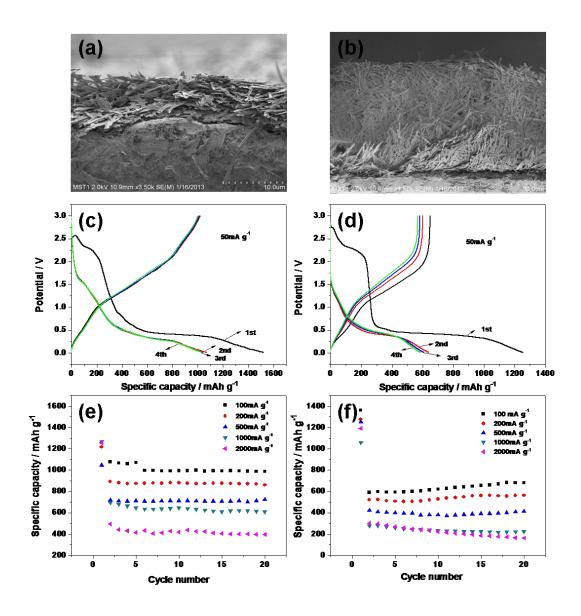



Fig.S2 A FE-SEM image of the MoO₃ contrast electrodes prepared through the conventional route.

Fig.S3 FE-SEM images of cross section of thinner (a) and thicker (b) MoO_3 film electrodes than the above electrode, and the charge/discharge curves for the initial four cycles at the current density of 50 mA g⁻¹ of the thinner (c) and thicker (d) MoO_3 electrodes between 3.0 and 0.01 V, and cycling performances of the thinner (e) and thicker (f) MoO_3 electrodes with 20 cycles between 0.01 and 3.0 V at the current densities of 100, 200, 500, 1000 and 2000 mA g⁻¹, respectively.