Supporting Information for

CO₂-expanded ethanol chemical synthesis of a Fe₃O₄@graphene composite and its high electrochemical properties as anode material for Li-ion batteries

Linhai Zhuo, ^{a,c} Yingqiang Wu, ^{a,c,d} Lingyan Wang, ^{a,c,d} Jun Ming, ^{a,c,d} Yancun Yu, ^{a,c} Xinbo Zhang,*^b Fengyu Zhao*^{a,c}

^a State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

^b State Key Laboratory of Rare Earth Resource Utilizations, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China E-mail: xbzhang@ciac.jl.cn

^c Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China E-mail:zhaofy@ciac.jl.cn; Fax: +86-431-85262410; Tel: +86-431-85262410 ^d University of the Chinese Academy of Sciences, Beijing 100049, China

Fig. S1 SEM image of the cross section of an electrode

Fig. S2 XRD patterns of the intermediate of Fe-salt@GO-CE-20 composite.

Fig. S3 TGA analysis for the Fe₃O₄@GN-E-20, Fe₃O₄@GN-CE-20, and Fe₃O₄@GN-CE-15.

Fig. S4 SEM (a) and TEM (b) images of GO.

Fig. S5 SEM image and corresponding carbon, iron, and oxygen elemental mapping of Fe₃O₄@GN-CE-20 composite synthesized in CO₂-expanded ethanol.

Fig. S6 SEM images of (a) Fe-salt@GO-CE-15. (b) Fe₃O₄@GN-CE-15. (c) TEM image of

Fig. S7 Nitrogen adsorption/desorption isotherms for (a) Fe₃O₄@GN-CE-20, and (b)

Fe₃O₄@GN-E-20.

Table S1 A comparison of electrochemical performance of the $Fe_3O_4@GN-CE-20$ with the recent studies on $Fe_3O_4@$ graphene composites

Type of	Initial	Reversible	0.5 C	1 C	2 C	5 C	Reference
material	efficier	cy capacity					
		$(mA h g^{-1})$					
Fe ₃ O ₄ –rGO	65 %	993 (50 mA h g ⁻¹)	647	396	193	-	1
Fe ₃ O ₄ -GNS	61.5 %	664 (100 mA h g ⁻¹)	-	-	-	-	2
Fe ₃ O ₄ /graphene	50 %	1160 (200 mA h g ⁻¹)	-	-	-	-	3
GN-Fe ₃ O ₄	65.6 %	1073 (100 mA h g ⁻¹)	-	-	-	-	4
Fe ₃ O ₄ /GNSs-1	55 %	612.5 (92.5 mA h g ⁻¹)	-	-	-	-	5
FGCs	-	$755.6 (1 \mathrm{A \ h \ g^{-1}})$	-	755.6	-	-	6
GCF	-	842.7 (200 mA h g ⁻¹)	~ 700	~ 600	~ 400	~ 200	7
RGO-Fe ₃ O ₄	71 %	877 (46.3 mA h g ⁻¹)	736	703	-	607	8
G-HM	-	900 (100 mA h g ⁻¹)	-	-	-	-	9

Fe3O4–graphene	70 %	1280 (100 mA h g ⁻¹)	1080	1010	940		10
GNS/Fe ₃ O ₄	-	900 (35 mA h g ⁻¹)	-	-	-	-	11
Fe ₃ O ₄ @GN-CE-20	73.5 %	941 (100 mA h g ⁻¹)	~ 930	~ 850	~ 730	~ 460	This work

(Note, in this table, $1c = 1000 \text{ mA g}^{-1}$)

- 1. Y. Chen, B. H. Song, X. S. Tang, L. Lu and J. M. Xue, J. Mater. Chem., 2012, 22, 17656-17662.
- J. Z. Wang, C. Zhong, D. Wexler, N. H. Idris, Z. X. Wang, L. Q. Chen and H. K. Liu, *Chem. Eur. J.*, 2011, 17, 661-667.
- 3. G. Wang, T. Liu, X. Xie, Z. Ren, J. Bai and H. Wang, *Mater. Chem. Phys.*, 2011, **128**, 336-340.
- 4. J. Su, M. Cao, L. Ren and C. Hu, J. Phys. Chem. C, 2011, 115, 14469-14477.
- X. Y. Li, X. L. Huang, D. P. Liu, X. Wang, S. Y. Song, L. Zhou and H. J. Zhang, J. Phys. Chem. C, 2011, 115, 21567-21573.
- 6. B. J. Li, H. Q. Cao, J. Shao, M. Z. Qu and J. H. Warner, J. Mater. Chem., 2011, 21, 5069-5075.
- 7. B. J. Li, H. Q. Cao, J. Shao and M. Z. Qu, *Chem. Commun.*, 2011, 47, 10374-10376.
- L. W. Ji, Z. K. Tan, T. R. Kuykendall, S. Aloni, S. D. Xun, E. Lin, V. Battaglia and Y. G. Zhang, *Phys. Chem. Chem. Phys.*, 2011, 13, 7170-7177.
- 9. D. Y. Chen, G. Ji, Y. Ma, J. Y. Lee and J. M. Lu, Acs Appl. Mater. Interfaces, 2011, 3, 3078-3083.
- 10. S. K. Behera, Chem. Commun., 2011, 47, 10371-10373.
- G. M. Zhou, D. W. Wang, F. Li, L. L. Zhang, N. Li, Z. S. Wu, L. Wen, G. Q. Lu and H. M. Cheng, *Chem. Mater.*, 2010, 22, 5306-5313.