Supplementary Information for:

High performance robust F-doped tin oxide based oxygen evolution electrocatalysts for PEM based water electrolysis

Moni Kanchan Datta^{1,2,a}, Karan Kadakia^{3,a}, Oleg I. Velikokhatnyi^{1,2}, Prashanth Jamapani³, Sung Jae Chung⁴, James A. Poston⁵, Ayyakkannu Manivannan⁵, and Prashant N. Kumta^{1,2,3,4,6}

¹Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261

²Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, PA 15261

³Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261

⁴Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261
⁵US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507

⁶Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, PA 15217

^aLead authors in the experimental part of this work

Fig. S1: The unit cells for bulk (left) and (110) surface (right) calculations used in present study. The atomic configurations shown correspond to $Ir_{0.25}Sn_{0.75}O_{1.5}F_{0.5}$.

Fig. S2: EIS spectra of pure IrO_2 (a), and $(Sn_{0.8}Ir_{0.2})O_2$:10F (b) obtained at open circuit potential (OCP) and at different potentials (1.6V, 1.8 V and 2V) tested in 1N H₂SO₄ at 40°C. The potentials are not iR_{Ω} corrected. The zoomed x-axis in the inset figures clearly show that the value of solution resistance (R_s) and electrode resistances (Re) are independent of potential.

Correction for the ohmic drop contribution:

In addition to the EIS method, we also used a method proposed by Krastjic and Trasatti [27] to obtain the value of uncompensated ohmic resistance. In this method it has been assumed that the solution resistance is independent of potential and Tafel law is used to obtain the uncompensated resistance R_u :

 $E = a + b \log I + iR_u$

Taking the derivative of E with respect to I, the following relation has been obtained,

 $dE/dI = b/I + R_u$

Therefore, by plotting the dE/dI as a function of 1/I, R_u can be obtained as the intercept at 1/I = 0 which can be used for calculating the ohmic drop (i R_u).

Fig. S3: The uncompensated resistance R_u of IrO₂ (a), and $(Sn_{0.8}Ir_{0.2})O_2$:10F (b), obtained from the method by plotting dE/dI with 1/I and the intercept at 1/I=0 corresponding to R_u . The R_u value (~15 Ω) obtained from this method is in good agreement with the ohmic resistance value obtained from the EIS study.

Fig. S4: The polarization curve of $(Sn_{0.8}Ir_{0.2})O_2$:15F film along with $(Sn_{0.8}Ir_{0.2})O_2$:10F conducted in the presence of 1N H₂SO₄ solution at 40°C with a scan rate of 1mV/sec before and after iR_Ω correction. The polarization curve shows that the electrochemical activity of $(Sn_{0.8}Ir_{0.2})O_2$:F decreases above 10wt.% F.

Fig. S5: The Tafel plot of (a) $(Sn_{0.8}Ir_{0.2})O_2$, (b) $(Sn_{0.8}Ir_{0.2})O_2$:5F (b) and (c) $(Sn_{0.8}Ir_{0.2})O_2$:10F, before and after iR_{Ω} correction, showing the Tafel slope ~76, 70 and 62mV/dec, respectively. The Tafel slope of $(Sn_{0.8}Ir_{0.2})O_2$:10F is similar to pure IrO₂ (~60mV/sec).

Fig. S6: (a) The polarization curve of $(Ta,Ir)O_2$:F film of different compositions conducted in the presence of 1N H₂SO₄ solution at 40°C with a scan rate of 1mV/sec before and after iR_Ω correction shows the electrochemical activity increases with increase in F content. The polarization curve of $(Ta_{0.8}Ir_{0.2})O_2$:10F, IrO₂ (b) and $(Sn_{0.8}Ir_{0.2})O_2$:10F (c) conducted in the presence of 1N H₂SO₄ solution at 40°C with a scan rate of 1mV/sec before and after iR_Ω correction. The plot shows that the electrochemical activity (Ta,Ir)O₂:F is inferior than IrO₂ and $(Sn,Ir)O_2$:F.