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Experimental Section 

Synthesis of RGO@SiO2 composite. The graphene oxide (GO) was produced via 

a modified Hummer’s method.
1
 First, the obtained GO (175 mg) was dispersed into 

100 ml de-ionized water containing cetyltrimethylammonium bromide (CTAB, 1g) 

and NaOH (40 mg) and sonicated to form a homogeneous solution. The obtained 

solution was stirred for 2h at 40 ℃, followed by slow addition of 0.5 ml tetraethyl 

orthosilicate (TEOS) and kept for 12 h. The final GO@SiO2 composite was collected 

by centrifugation and washed with water and ethanol for several times. The GO was 

converted into RGO by calcinating at 800 ℃ for 3 h in Ar to obtain the RGO@SiO2 

composite.  

Synthesis of RGO@Li2MnSiO4@C composite. The RGO@Li2MnSiO4@C 

composite was obtained via a solid-state reaction by using RGO@SiO2 as a template. 

In a typical experiment, 0.6 mmol lithium acetate dehydrate, manganese acetate 

tetrahydrate, RGO@SiO2 as well as 0.33 mmol citric acid monohydrate were mixed 

in 10 ml water and sonicated for 3 hours. The above solution was stirred at 70 ℃ to 

evaporate the water. The obtained mixture was fine ground and calcinated at 400 ℃ 

for 3 hour in Ar atmosphere. Then, this intermediate product was again ground, 

pressed into plates, and subsequently reacted at 800 ℃ for 10 hours under Ar 

atmosphere to get the RGO@Li2MnSiO4@C composite. The RGO@Li2MnSiO4 was 

prepared under the same procedure without the addition of citric acid. The pure 

Li2MnSiO4 was synthesized under the same procedure by using SiO2 particles (~180 

nm) as the silicon source with no addition of RGO and citric acid.  

Sample characterization: The structure, morphology and element component of 

the RGO, RGO@SiO2, and RGO@Li2MnSiO4@C samples were carried out by X-ray 

diffraction (XRD, RIGAKU SCXmini), transmission electron microscope (TEM, 

JEM-2010), energy dispersive X-ray spectroscopy (EDS, JSM-6700F), X-ray 

photoelectron spectroscopy (XPS, ESCALAB 250) and Raman spectroscopy 

(Renishaw 2000, excited at 785 nm). Thermogravimetry analyses (TGA, NETZSCH 
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STA449C) were measured from 30 to 1000 ℃ at a heating rate of 10 K min
-1

 in air to 

determine the carbon content in these samples. 

Electrochemical measurements:  

The electrochemical behaviors were performed via a CR2025 coin-type test cell 

assembled in an Ar-filled golve box with the concentration of moisture and oxygen 

below 1 ppm. The working electrode was fabricated by mixing 70 wt% active 

material (RGO@Li2MnSiO4@C or pure Li2MnSiO4), 20 wt% conductivity agent 

(ketjen black, KB), and 10 wt% polymer binder (polyvinyldifluoride, PVDF) with 

1-methyl-2-pyrrolidinone (NMP). The resultant slurry was then pasted on stainless 

steel collector and dried at 80 ℃ for 12 h under vacuum. The electrolyte was 1 M 

LiPF6 in EC: EMC: DMC (1: 1: 1 v/v). A lithium foil was used as both the counter 

and the reference electrode. Cells were charged and discharged on a LAND 2001A 

system over a range of 1.5 V to 4.7 V at room temperature. The loading weight of 

active material on the stainless steel is about 1.2±0.3 mg cm
-2

. The specific 

charge/discharge capacities mentioned in this communication were calculated based 

on the mass of Li2MnSiO4. 
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Fig. S1 X-ray diffraction (XRD) patterns of GO and RGO.  

 

 

 

Fig. S2 Raman spectra of the RGO and RGO@Li2MnSiO4@C composite. 
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Fig. S3 (a) TEM and (b) HRTEM images of RGO.  

 

 

Fig. S4 Particle size distribution of Li2MnSiO4 nanoparticles in 

RGO@Li2MnSiO4@C composite. 
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Fig. S5 TEM images of the RGO@Li2MnSiO4 composite. 

 

Fig. S6 High resolution XPS spectra of the (a) Mn 2p and (b) Si 2p in the 

RGO@Li2MnSiO4@C composite.  
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Fig. S7 Columbic efficiency of the RGO@Li2MnSiO4@C composite at 1C between 

1.5 V and 4.7 V.  

 

Fig. S8 Thermal gravimetric analysis (TGA) curves of pure Li2MnSiO4 and 

RGO@Li2MnSiO4@C composite at a heating rate of 10 ℃ min
-1

 between 30 and 

1000 ℃. 
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Fig. S9 Electrochemical impedance spectra for pure Li2MnSiO4 and 

RGO@Li2MnSiO4@C composite. 

 

Fig. S10 (a) The first and second charge-discharge curves, and (b) cycling 

performance of pure Li2MnSiO4 cathode at a rate of 1C between 1.5 V and 4.7 V.  
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Fig. S11 Discharge capacity versus cycle number of the RGO@Li2MnSiO4 electrode 

between 1.5 V and 4.7 V at 1C.   

 

 

Fig. S12 The typical discharge curves of the RGO@Li2MnSiO4@C composite at 

various current densities. 
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