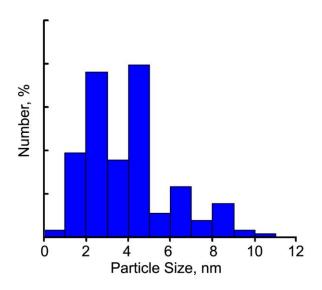
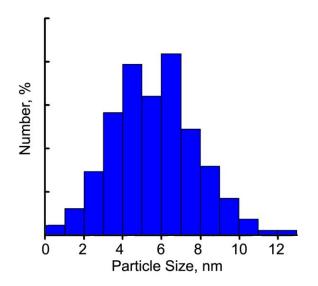
Supporting Information

Shell-adjustable Hollow 'Soft' Silica Spheres as a Support for Gold Nanoparticles

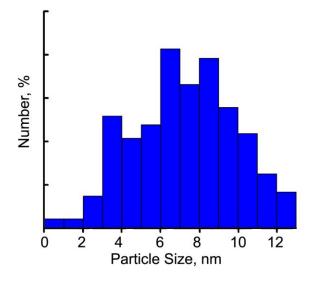
Qingmin Ji,* Jonathan P. Hill, and Katsuhiko Ariga*

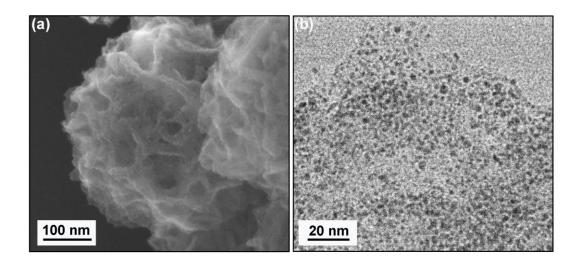

World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute For Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan.

JST, CREST, Gobancho, Chiyoda-ku, Tokyo 102-0076.


*ARIGA.Katsuhiko@nims.go.jp

*JI.Qingmin@nims.go.jp


Additional Data


Figure S1. The distribution of Au nanoparticles in the Au-FlaSS1 with Au/Si mass ratio of 0.02.

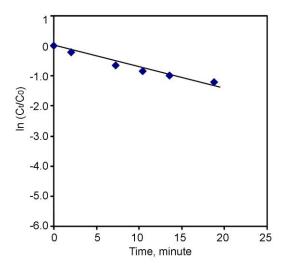

Figure S2. The distribution of Au nanoparticles in the Au-FlaSS2 with Au/Si mass ratio of 0.07.

Figure S3. The distribution of Au nanoparticles in the Au-FlaSS3 with Au/Si mass ratio of 0.21.

Figure S4. The SEM (a) and TEM (b) images of the Au-FlaSS2 after the modification by 1wt% 3-mercapto-propyl-trimethoxysilane solution. The TEM image showed the gold particles on the surface of the flakes in the shell.

Figure S5. The relationship between $\ln(C_t/C_0)$ and reaction time (*t*) for the case of the Au-FlaSS2 after the modification by 1wt% 3-mercapto-propyl-trimethoxysilane solution. The rate constants *k* for the reduction of 4-nitrophenol is calculated to be 0.036 min⁻¹, which is much lower than the value of Au-FlaSS2 without modification. The coverage of thiol groups on the surfaces of Au particles blocked the active site and resulted in the decrease of catalysis efficiency.