Supplementary information for

Distinct anion sensing by a 2D self-assembled Cu(I)-based metal-organic polymer with versatile visual colorimetric responses and efficient selective separations *via* anion exchange

Songyan Bai,^[a,b] Tianlu Sheng,^[b] Chunhong Tan,^[a,b] Qilong Zhu,^[a,b] Vihui Huang,^[a,b] Hao Jiang,^[a,b] Shengmin Hu,^[b] Ruibiao Fu,^[b] and Xintao Wu

^aState Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China. ^bGraduate School of the Chinese Academy of Sciences, Beijing, 100049, China.

Corresponding author:
E-mail: wxt@ fjirsm.ac.cn.
Tel: +86-591-83719238; Fax: +86-591-83719238

Materials and Methods:

All reagents and solvents used were received from commercial suppliers without further purification. Elemental analyses (C, H, and N) were performed with a Vario MICRO CHNOS Elemental Analyzer and Energy Dispersive X-ray Spectroscopy (EDX) analyses were conducted on a Scanning Electron Microscope of JSM-6700F. The infrared spectra with KBr pellet were recorded in the range of 4000-400 cm⁻¹ on a Perkin-Elmer Spectrum One FT-IR Spectrometer. Thermal analysis was performed on a NETZSCH STA 449C instrument from room temperature to 800 °C with a heating rate of 10 °C/min⁻¹ under nitrogen flow. The UV/Vis spectra were carried out on a PE Lambda 800 UV/Vis/NIR spectrometer equipped with an integrating sphere, and the BaSO₄ plate was used as the reference. The EPR spectra were acquired on a Bruker ER-420 spectrometer with a 100 KHz magnetic field in X band and an electronic field of 9655.448 MHz at room temperature. Powder X-ray diffraction (PXRD) data were collected on a DMAX-2500 diffractometer with Cu K_α.

Synthesis:

α, α '-bis(N-glutamyl)-p-xylene (bgxH₄).

L-Glutamic acid (7.36 g, 0.05 mol) and sodium hydroxide (4.0 g, 0.1 mol) were dissolved in the solution of 30 ml methanol and 30 ml water. A solution of terephthalaldehyde (3.35 g, 0.025 mol) in 60mL of methanol was added and the mixed solution was stirred at room temperature for 3 hours. Whilst it was cooled to 0 °C, the solution of sodium borohydride (2.27 g, 0.06 mol) in 40 ml methanol was slowly added into the mixture, and stirring was continued for one more hour. Then, the solution was adjusted to pH 3.0~4.0 by dropwise addition of concentrated hydrochloric acid. After filtration, the white solid was then washed twice with dry ethanol and ether, recrystallized and dried under vacuum at ambient temperature to give 70% yield. ¹H NMR (400MHz, D₂O): δ 1.80 (m, 4H); 2.30 (t, *J*=1.37Hz, 4H); 3.0 (t, *J*=1.37Hz, 2H); 4.52 (d, *J*=1.37Hz, 2H); 4.82 (d, *J*=1.37Hz, 2H); 7.42 ppm (s, 4H); ESI-MS: m/z 395.2 ([M-1]⁺, calcd 396.4), elemental analysis calcd (%) for C₁₈H₂₄N₂O₈: C 54.54, H 6.10, N 7.07; found: C 54.41, H 6.19, N 6.98.

During the solvothermal process, $Cu(\Pi)$ ions have been transformed to Cu(I) cations, whilst α, α' -bis(N-pyroglutamyl)-p-xylene (bpgxH₂) forms in situ reaction from intramolecular cyclization of bgxH₄.

 $[Cu_4(bipy)_4(L-bgxH_2)](NO_3)_2$ (H₂O)₄ (compound 1). Copper nitrate trihydrate (0.0377 g, 0.2 mmol) and 4,4'-bipyridine (0.0312 g, 0.2 mmol) were added to the solution of bgxH₄ (0.0396 g, 0.1 mmol) in 5 ml DMF/ethanol/water (v:v:v=1:1:1). The reaction suspension was stirred for 10 min and was transferred into a 12 ml vessel. The vessel was sealed and heated at 105 °C for 1 day and slowly cooled to the room temperature. After using ultrasonic treatments for 10 minutes and rinsing thoroughly with distilled water and dry ethanol, the red prism crystals of compound 1 were obtained in ca. 58% yield based on bgxH₂. Anal. Calcd for for Cu₄C₅₈H₅₈N₁₂O₁₆ (1): M=1432.34; elemental analysis: calcd (%) for Cu₄N₁₂O₁₆C₅₈H₅₇: C 48.64, H 4.01, N 11.73; found: C 48.55, H 4.14, N 11.58.

Crystallographic Analyses:

The structural determination of single crystal was performed on Rigaku Mercury CCD diffractometer with graphite-monochromated Mo K α ($\lambda = 0.71073$ Å) radiation at room temperature. The structures were solved by direct methods and refined by the full-matrix leasts-squares technique on F² using the SHELXTL-97 program. All non-hydrogen atoms were refined with anisotropic displacement parameters. The positions of hydrogen atoms attached to carbon atoms were generated geometrically (C-H bond fixed at 0.97 Å). Notably, the water molecules in the two complexes were refined by using the pseudo-isotropic "ISOR" restraint to make the ADP values of the disordered oxygen atoms more reasonable. And the selected bond lengths and angles of the complexes are listed in Table S1-S2.

Compound	1	
Formula	$Cu_4C_{58}H_{58}N_{12}O_{16}$	
FW	1431.31	
Temperature	293K	
Cryst syst m	triclinic	
Space group	P 1	
a (Å)	9.1100(3)	
b (Å)	10.3806(7)	
c (Å)	16.1429(10)	
α(deg)	82.065(13)	
β(deg)	77.497(9)	
γ(deg)	82.299(13)	
$V(Å^3)$	1467.53(14)	
Ζ	1	
$D_c (g \text{ cm}^{-3})$	1.61945	
μ(mm ⁻¹)	1.511	
Reflns collcd	16907	
Unique reflns (Rint)	12212	
GOF	1.032	
$R1$, ^a wR2 ^b [I>2 σ (I)]	0.0378, 0.0915	
R1, ^a wR2 ^b (all data)	0.0463, 0.0969	
${}^{\alpha}\mathbf{R}1 = \sum (\parallel \mathbf{F}_{o} \mid - \mid \mathbf{F}_{c} \parallel) / \sum \mid \mathbf{F}_{o} \mid .$	^b wR2 = { $\sum w [(F_o^2 - F_c^2)] / \sum w [(F_o^2)^2]$ } ^{0.5} .	

 Tablet S1. Crystal Data and Structure Refinements for compound 1

Cu1-N3	1.938(3)	Cu1-N5	1.935(4)	Cu1-O1	2.189(3)
Cu2-N7	1.909(3)	Cu2-N9	1.915(3)	Cu2-O1	2.251(3)
Cu3-N4	1.921(3)	Cu3-N6a	1.929(3)	Cu3-O5b	2.330(4)
Cu4-N10a	1.913(4)	Cu4-N8	1.924(3)	Cu4-O4b	2.138(3)
N6-Cu3c	1.929(3)	N10-Cu4c	1.913(4)	O5-Cu3d	2.330(3)
O4-Cu4d	2.138(3)				
N3-Cu1-N5	155.98(14)	N3-Cu1-O1	98.81(13)	N5-Cu1-O1	105.02(13)
N7-Cu2-N9	157.96(14)	N7-Cu2-O1	99.27(12)	N9-Cu2-O1	100.06(12)
N4-Cu3-N6a	156.20(14)	N4-Cu3-O5b	106.17(14)	N6a-Cu3-O5b	97.12(14)
N10a-Cu4-N8	160.29(14)	N10a-Cu4-O4b	98.61(15)	N8-Cu4-O4b	100.54(15)

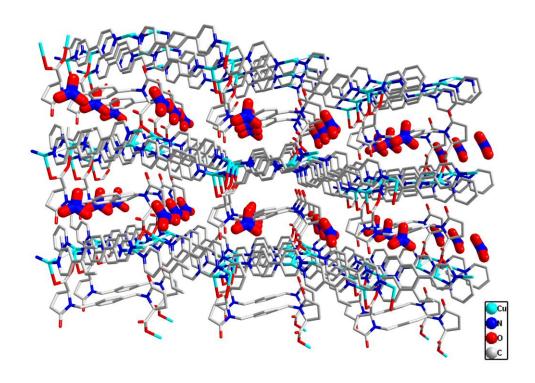
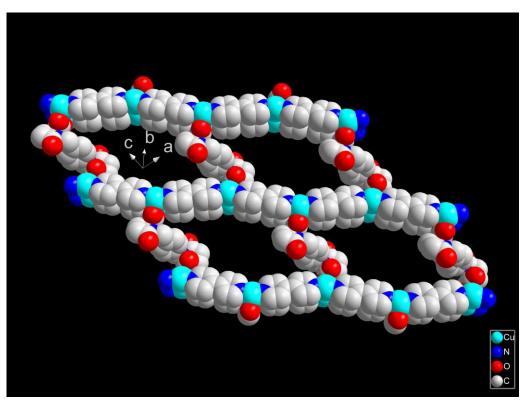



Fig.S1. The voids are occupied by uncoordinated nitrate anions in space filling representation.

Fig.S2. Space-filling representation of single layer in compound **1** (The uncoordinated nitrate anions and water molecules are omitted.)

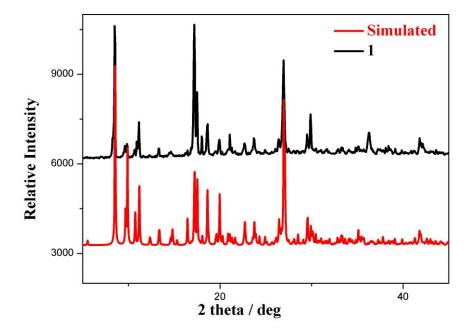


Fig.S3. Powder X-ray diffractions for simulated and experimental compound 1

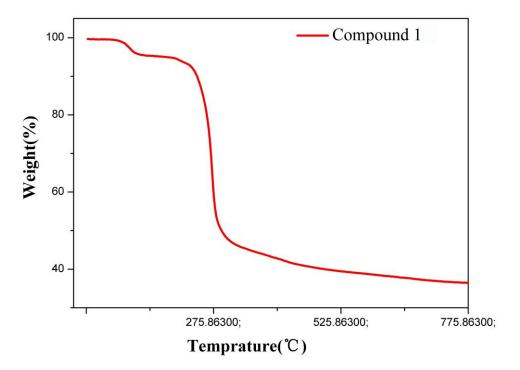


Fig.S4. TGA curve of compound 1.

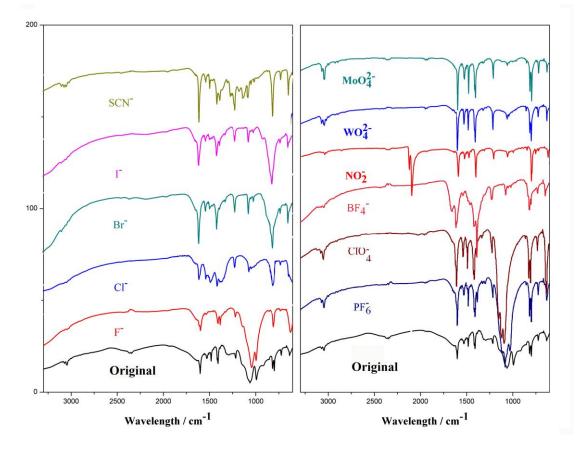
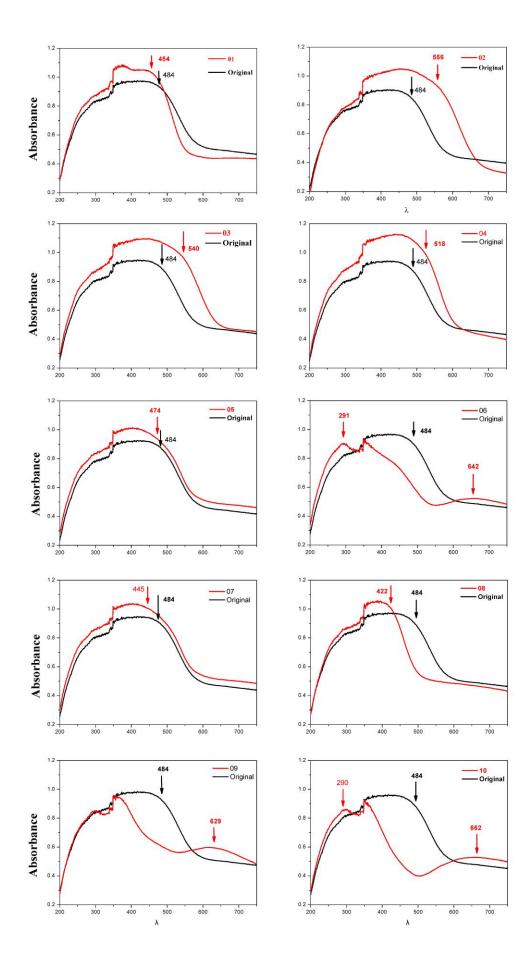



Fig.S5. IR spectra based on anion-exchanged products.

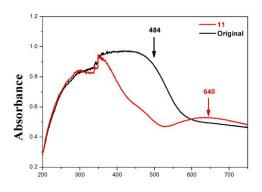
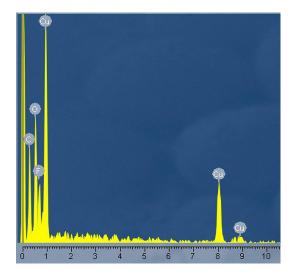
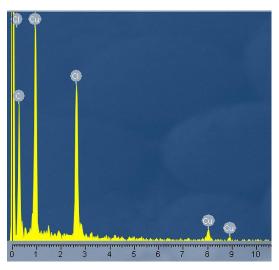
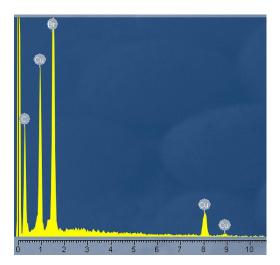
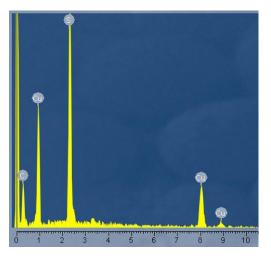
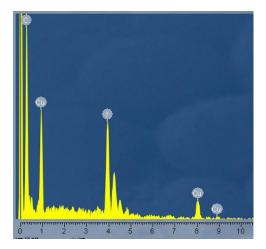




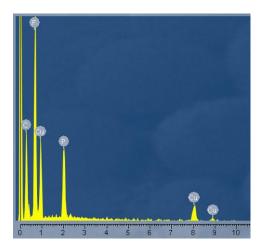
Fig.S6: Solid-state UV/Vis spectra based on anion-exchanged products

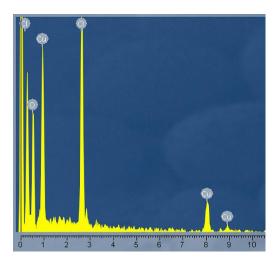

Fig.S7: EDX and Elemental Analyses

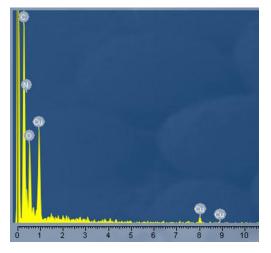


Products of 01			
Element	Calcd (%)	Found (%)	
С	49.88	50.42	
Н	4.19	4.65	
Ν	10.65	10.87	

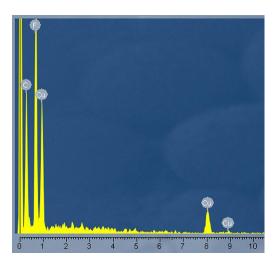

Products of 02			
Element	Calcd (%)	Found (%)	
С	50.01	50.58	
Н	4.20	4.54	
Ν	11.12	11.57	

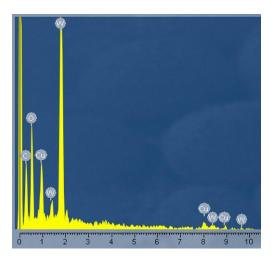

Products of 03				
Element	Calcd (%)	Found (%)		
С	47.48	47.98		
Н	3.98	4.60		
Ν	9.65	9.68		


Products of 05				
Element	Calcd (%)	Found (%)		
С	49.14	49.25		
Н	4.08	4.79		
Ν	10.74	10.80		

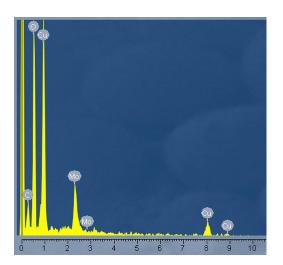


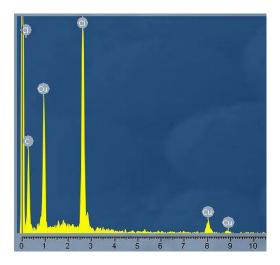
Products of 04		
Element	Calcd (%)	Found (%)
С	47.30	47.83
Н	3.97	4.33
Ν	10.83	10.84


Products of 06			
Element	Calcd (%)	Found (%)	
С	46.71	47.32	
Н	3.92	4.63	
Ν	10.61	11.62	

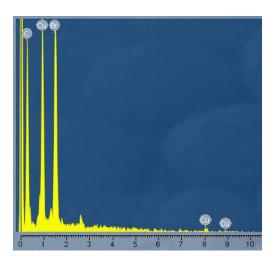


Products of 07		
Element	Calcd (%)	Found (%)
С	47.39	47.54
Н	3.98	4.06
N	10.50	10.51

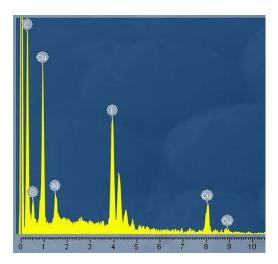

Products of 09			
Element	Calcd (%)	Found (%)	
С	48.86	48.48	
Н	4.10	4.27	
Ν	11.79	12.11	

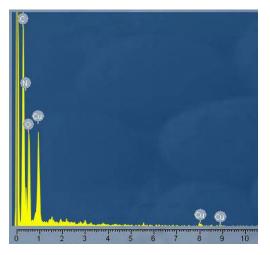

Products of 08			
Element	Calcd (%)	Found (%)	
С	47.76	47.75	
Н	4.00	3.37	
Ν	10.54	10.54	

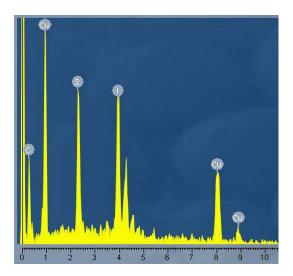
Products of 10				
Element	Calcd (%)	Found (%)		
С	46.26	46.57		
Н	3.88	4.19		
Ν	10.80	10.90		

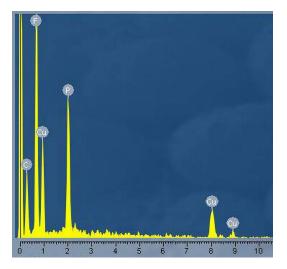


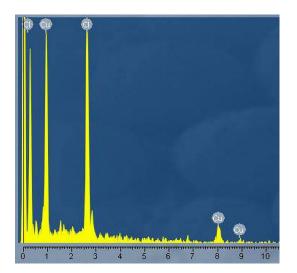
Products of 11			
Element	Calcd (%)	Found (%)	
С	47.34	47.07	
Н	3.97	3.71	
Ν	10.05	10.12	

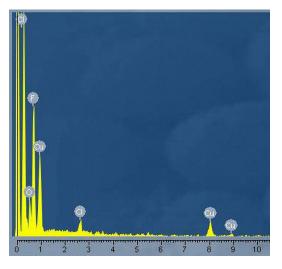

Anion-exchange Selectivity:


Products of 01'		
Element	Calcd (%)	Found (%)
С	49.33	48.84
Н	4.09	4.41
Ν	11.15	10.42

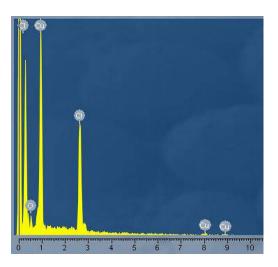

Products of 02'		
Element	Calcd (%)	Found (%)
С	47.97	48.42
Н	3.96	4.69
Ν	10.50	11.35

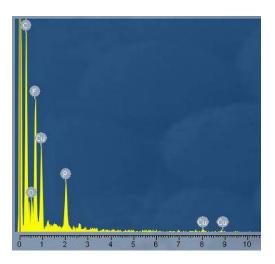

Products of 03'			
Element	Calcd (%)	Found (%)	
С	47.72	48.39	
Н	3.96	4.11	
Ν	11.11	10.38	


Products of 05'			
Element	Calcd (%)	Found (%)	
С	49.15	48.80	
Н	4.01	4.49	
Ν	11.75	11.58	

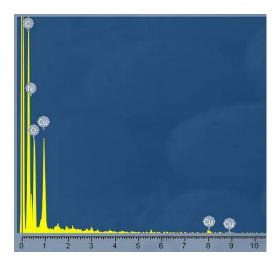


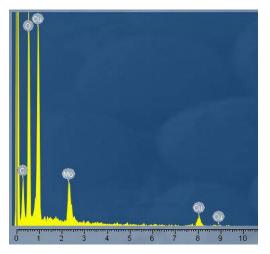
Products of 04'			
Element	Calcd (%)	Found (%)	
С	48.45	47.88	
Н	3.98	4.24	
Ν	11.43	11.36	


Products of 06'		
Element	Calcd (%)	Found (%)
С	46.98	47.27
Н	3.87	4.43
Ν	10.76	10.82

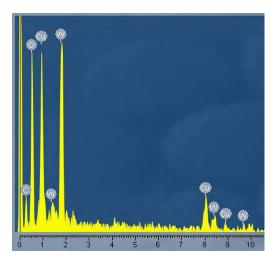


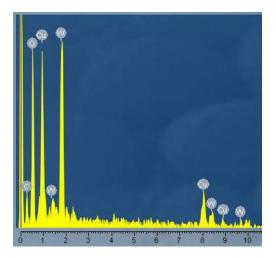
Products of 07'		
Element	Calcd (%)	Found (%)
С	49.52	49.86
Н	4.08	4.40
Ν	10.99	11.32


Products of 09'			
Element	Calcd (%)	Found (%)	
С	48.12	48.58	
Н	3.97	4.49	
Ν	11.15	10.87	



Р	roducts of 08'		
Element	Calcd (%)	Found (%)	E
С	49.43	50.16	C
Н	4.08	4.38	Н
Ν	11.06	11.09	Ν


Products of 10'		
Element	Calcd (%)	Found (%)
С	46.98	47.39
Н	3.87	4.47
Ν	10.76	11.25



Products of 11'			
Element	Calcd (%)	Found (%)	
С	48.88	48.17	
Н	4.03	4.37	
Ν	11.80	11.25	

Products of 13'			
Element	Calcd (%)	Found (%)	
С	47.67	48.25	
Н	3.93	4.67	
Ν	11.05	11.53	

Products of 12'			
Element	Calcd (%)	Found (%)	
С	47.66	46.89	
Н	3.93	4.35	
Ν	11.05	11.59	

Products of 14'			
Element	Calcd (%)	Found (%)	
С	47.63	47.69	
Н	3.93	4.76	
Ν	11.03	11. 79	