Electronic Supplementary Information

Facile synthesis of hierarchical $ZnIn_2S_4$ submicrospheres composed of ultrathin mesoporous nanosheets as a highly efficient visible-light-driven photocatalyst for H₂ production

Lu Shang,^{*ab*} Chao Zhou,^{*a*} Tong Bian,^{*ab*} Huijun Yu,^{*ab*} Li-Zhu Wu,^{*a*} Chen-Ho Tung,^{*a*} and Tierui Zhang^{**a*}

^aKey Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. ^bUniversity of Chinese Academy of Sciences, Beijing, 100049, P. R. China *Corresponding author. E-mail: tierui@mail.ipc.ac.cn.

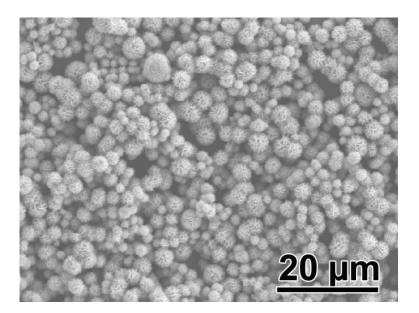


Fig. S1 SEM image of ZnIn₂S₄-H.

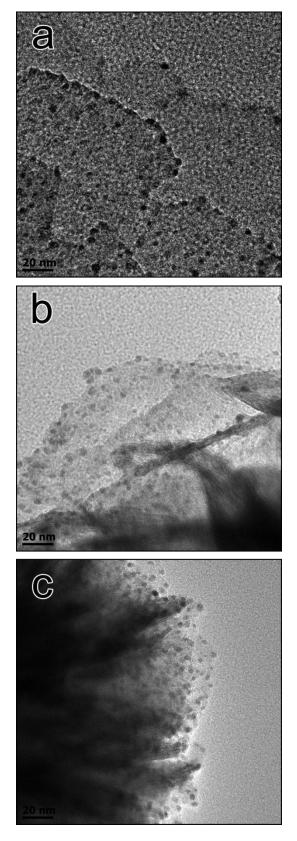


Fig. S2 TEM images of 1 wt% Pt/ZnIn₂S₄-220, 1 wt% Pt/ZnIn₂S₄-200, and 1 wt% Pt/ZnIn₂S₄-H.

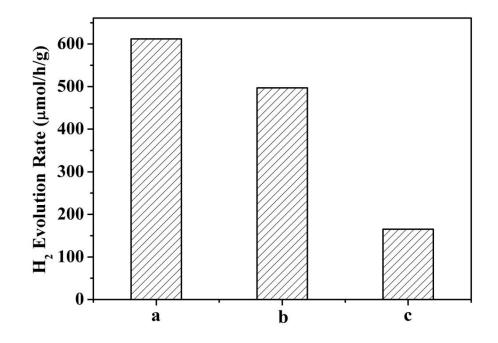


Fig. S3 Photocatalytic H₂ evolution rates over (a) 1 wt% Pt/ZnIn₂S₄-220; (b) 1 wt% Pt/ZnIn₂S₄-200; and (c) 1 wt% Pt/ZnIn₂S₄-H from an aqueous solution containing both Na₂SO₃ and Na₂S under visible light irradiation ($\lambda > 420$ nm) in 2 h.

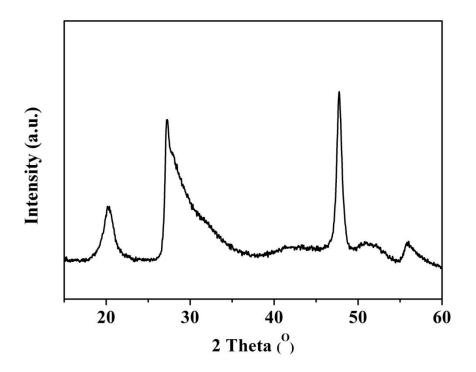


Fig. S4 XRD pattern of ZnIn₂S₄-220 after 5 photocatalytic runs.

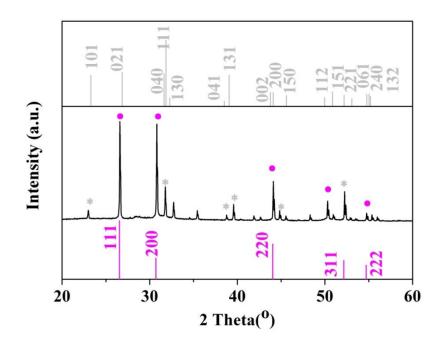


Fig. S5 XRD patterns of as-synthesized SnS (dark; * orthorhombic SnS, • zinc blende SnS), and standard cards of orthorhombic SnS (grey, JCPDS No. 83-1758) and zinc blende SnS (magenta, see ref. 29,30). The additional peaks assigned to a trace amount of impurities (most likely $Sn(OH)_2$ and SnO_2) were also found in this sample.