Electronic supplementary information (ESI) for

One-step solvothermal carbonization to microporous carbon materials derived from cyclodextrins

Yan-Chao Zhao,^{$\dagger,\ddagger}$ Li Zhao,^{\dagger} Li-Juan Mao,^{\dagger} and Bao-Hang Han^{$*,\dagger,\ddagger$}</sup>

[†] National Center for Nanoscience and Technology, Beijing 100190, China

[‡] College of Science, National University of Defense Technology,

Changsha 410073, China

Tel: +86 10 8254 5576. Email: <u>hanbh@nanoctr.cn</u>.

percentage)						
Sample	Carbon	Oxygen	Sulfur			
aCDPC	95.81	3.78	0.39			
bCDPC	95.68	3.88	0.43			
gCDPC	96.68	2.75	0.56			
HMFPC	95.89	3.33	0.76			

Table S1 Results of the energy dispersive X-ray (EDX) analysis for CDPC (Atomic

Fig. S1 EDX spectrum of aCDPC.

Fig. S2 EDX spectrum of bCDPC.

Fig. S4 EDX spectrum of HMFPC.

Fig. S5 Thermogravimetric analysis (TGA) of aCDPC, bCDPC, and gCDPC.

Fig. S6 FT-IR spectra of 5-hydroxymethyl-2-furaldehyde (HMF) and HMFPC.

Fig. S7 FT-IR spectra of α -cyclodextrin (aCD) and aCDPC.

Fig. S8 FT-IR spectra of β -cyclodextrin (bCD) and **bCDPC**.

Fig. S9 FT-IR spectra of γ -cyclodextrin (gCD) and gCDPC.

Fig. S10 SEM (a), TEM (b, c, d, and e), and HR-TEM (f and g) images of aCDPC (c

and f), **bCDPC** (d and g), **gCDPC** (a and e), and **HMFPC** (b).

Fig. S11 BET specific surface area plots for **HMFPC** (a, b), **aCDPC** (c, d), **bCDPC** (e, f), and **gCDPC** (g, h) calculated over different relative pressure ranges: $P/P_0 = 0.01-0.10$ (a, c, e, and g) and $P/P_0 = 0.05-0.20$ (b, d, f, and h), respectively.

Sample	P/P_0 range	$S_{\rm BET}$	Correlation	Number of	$C \operatorname{constant}^{a}$
		$(m^2 g^{-1})$	Coefficient	Points	
HMFPC	0.01-0.10	759	0.9999	5	645
HMFPC	0.05-0.20	708	0.9996	8	-198
aCDPC	0.01-0.10	703	0.9999	5	577
aCDPC	0.05-0.20	636	0.9996	8	-224
bCDPC	0.01–0.10	616	0.9999	5	616
bCDPC	0.05-0.20	653	0.9996	8	-199
gCDPC	0.01-0.10	678	0.9999	5	340
gCDPC	0.05-0.20	652	0.9998	8	-758

 Table S2 BET specific surface area data calculated over different pressure ranges

^{*a*} The low relative pressure range of 0.01–0.10 using five points gives the higher C constant values and therefore the best fit to the BET equation.

Fig. S12 Pore size distribution profiles calculated by the original DFT method in the mesopore range. The profiles of **HMFPC**, **bCDPC**, and **gCDPC** have also been offset by 0.2 unit for the purpose of clarity.