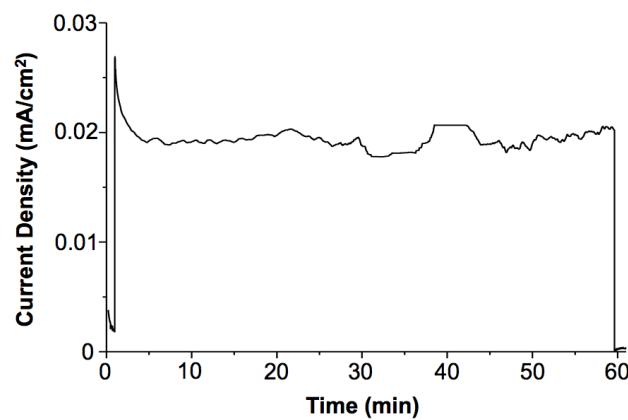


Synthesis and Characterization of High Surface Area CuWO₄ and Bi₂WO₆

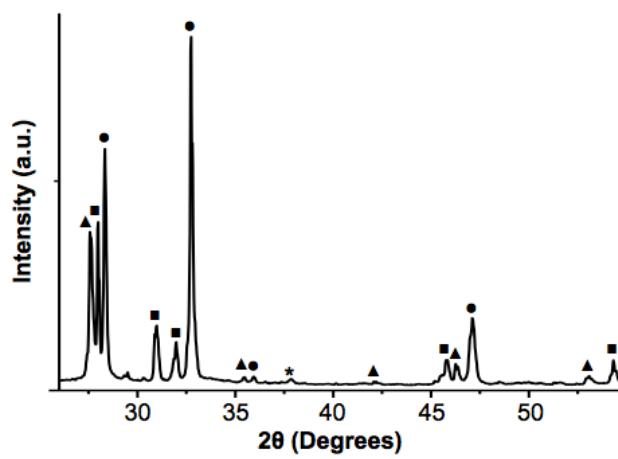
Electrodes for use as Photoanodes for Solar Water Oxidation

James C. Hill^a and Kyoung-Shin Choi^{b,}*

^aDepartment of Chemistry, Purdue University, West Lafayette, IN 47907, USA


^bDepartment of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA

SUPPORTING INFORMATION


**To whom correspondence should be addressed. Email: kschoi@chem.wisc.edu; Tel: 1- 608-262-5859; Fax: 1- 608-262-0453.*

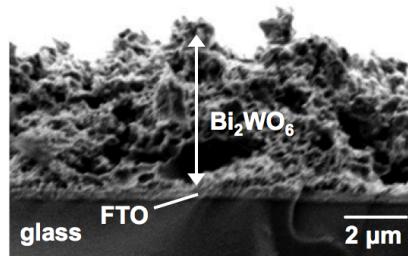

Figure S1. XRD pattern of a Cu^{2+} -containing WO_3 electrode annealed at 550 °C for 6 hours before the removal of CuO in acid. Peaks from the FTO substrate, CuWO_4 , and CuO are denoted by *, • and ▲, respectively.

Figure S2. Photocurrent-time plot of a CuWO_4 electrode measured in 0.1 M sodium phosphate buffer (pH 7) at 0.42 V vs. Ag/AgCl (1.03 V vs. RHE) (AM 1.5G, 100 mW/cm² illumination).

Figure S3. XRD pattern of a Bi^{3+} -containing WO_3 electrode annealed at 550 °C for 6 hours before the removal of Bi_2O_3 . Peaks from the FTO substrate, Bi_2WO_6 , and Bi_2O_3 are denoted by *, ● and ▲, respectively. The peaks denoted by ■ are peaks from Bi-rich Bi-W-O ternary phases such as $\text{Bi}_{3.84}\text{W}_{0.16}\text{O}_{6.24}$, which can also be removed with Bi_2O_3 in acid, leaving a pure Bi_2WO_6 electrode.

Figure S4. Side-view SEM image of a Bi_2WO_6 electrode.