Supporting Information

A Hybrid Metal Phosphate-Phosphite Material Grafted with Electron Deficient Organic Component Showing Interesting Fluorescent and Photosensitive Properties

Jie Zhang, Zhengguo Yao, Shijun Liao, Jingcao Dai and Zhiyong Fu*

Experimental Section

General: All the reagents were purchased from commercial channels and used without further purification; tris (4-pyridyl) triazine was synthesized as reported. UV-Visible spectral measurements were carried out using a HITACHI U-3010 spectrometer. The emission/excitation spectra were recorded on a HITACHI F-4500 fluorescence spectrophotometer. The ESR spectra were recorded at room temperature with a Bruker EMX-10/12 Electron Spin Resonance Spectrometer. IR spectra were characterized by a Bruker Tensor 27 FTIR spectrometer in the range of 4000-400 cm⁻¹ using a KBr disk. The C, H and N microanalyses were carried out with a Vario EL III elemental analyzer.

Synthesis of Zn₉(TPT)₃ (H₂PO₄)₂(HPO₄)₄(HPO₃)₄·6H₂O **1**: Zn(NO₃)₂•6H₂O (0.2975g, 1mmol) was added to a mixture of H₃PO₃ (0.246g, 3mmol), and TPT (0.0624, 0.2mmol) in H₂O (4mL). The mixture was sealed in a 25ml Teflon-lined steel bomb and heated at 140°C for 72h. Yellow needle-like crystals were collected in 35.6% yield (based on TPT) after filtration, washed by water, and dried at room temperature. Elemental Anal. Calc. (%) for C₅₄H₆₀N₁₈O₄₂P₁₀Zn₉ (2531.23): C, 25.62; H, 2.39; N, 9.96. Found: C, 25.45; H, 2.41; N, 9.85. IR (KBr): v = 3427 (m), 3109(w), 3058(w), 1652(w), 1618(m), 1517(s), 1377(s), 1319(m), 1110(s), 912(m), 806(s), 663(m), 601(m), 518(m) cm⁻¹.

Fig. S1 (a) the structure of the 24-ring viewed along the c direction; **(b)** the tetragonal array of the 24-ring channel; **(c)** the corner-sharing 4-ring, 8-ring, 12-ring and 24-ring structure.

Fig. S2 (a) the fluorescence emission spectrum of TPT in ethylene glycol monoethyl ether solution ($\lambda_{exc} = 370 \text{ nm}$); (b) the solid-state fluorescence emission spectrum of TPT ($\lambda_{exc} = 370 \text{ nm}$); (c) the solid-state fluorescence emission spectrum of compound **1** ($\lambda_{exc} = 370 \text{ nm}$).

Fig. S3 UV-vis spectrum of TPT.

Fig. S4 ESR spectrum of the blue-green crystals of 1.

Fig. S5 The proposed photo-responsive mechanism.

Fig. S6. IR spectrum of 1