
Supporting Information

A Facile Strategy for the Preparation of Well-Dispersed Bimetal Oxide CuFe₂O₄ Nanoparticles Supported on Mesoporous Silica

Bin Li, ^a Min Li, ^a Chaohua Yao, ^a Yifeng Shi, ^{a*} Danru Ye, ^a Jing Wu, ^{a*} Dongyuan Zhao^b

^b Department of Chemistry, Fudan University, Shanghai, 200433, China

Figure S1. (a) Small angle XRD pattern, (b) TEM image, (c) Nitrogen sorption isotherms, and (c inset) its corresponding pore size distribution curve of the mesoporous silica KIT-6 support.

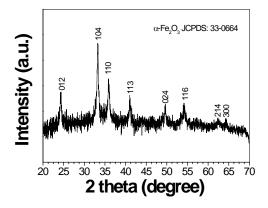
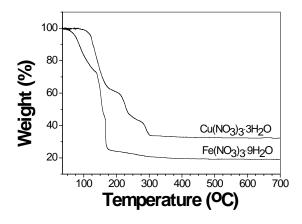



Figure S2. XRD pattern of the red powder form precipitate collected from the homogeneous mixture of iron nitrate and copper nitrate after being heated at 150 °C for 2 h. This result confirms that crystalline α -Fe₂O₃ can be directly formed form the solution of homogeneously mixed iron and copper nitrate precursors.

^a College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China

Figure S3. TGA curves of $Fe(NO_3)_3 \cdot 9H_2O$ and $Cu(NO_3)_2 \cdot 3H_2O$ recorded under air gas flow (40 mL/min) with a ramp of 15 °C/min. (7.594 mg $Fe(NO_3)_3 \cdot 9H_2O$ and 8.208 mg $Cu(NO_3)_2 \cdot 3H_2O$ were separately loaded in an open alumina crucible without any cover for TGA test.)

Table S1. The weight loss of $Cu(NO_3)_2 \cdot 3H_2O$ and $Fe(NO_3)_3 \cdot 9H_2O$ after drying at $100^{\circ}C$ for 24 h.

Molecule formula	Origin weight (g)	Weight loss (g)	Weight loss percent %	Theory percent of H ₂ O %
$Fe(NO_3)_3 \cdot 9H_2O$	1.094	0.438	40	40
$Cu(NO_3)_2 \cdot 3H_2O$	0.849	0.209	24.6	22.3

Table S2. Parameters of KIT-6 support and KIT-6 with CuFe₂O₄ particles.

N () 1	BET surface area	Pore size	Pore Volume
Materials	$(m^2 g^{-1})$	(nm)	$(cm^3 g^{-1})$
KIT-6	599	7.5	0.94
10% loading	411	7.5	0.70
20% loading	335	7.5	0.55
30% loading	387	7.5	0.56

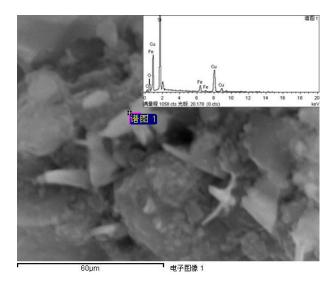
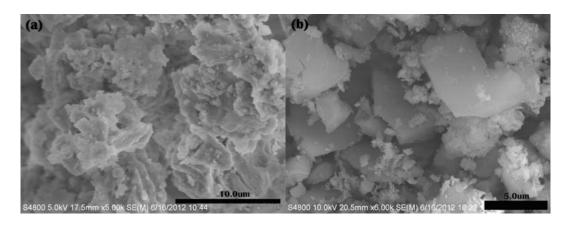



Figure S4. SEM image and EDX spectrum of Sample-W.

Figure S5. SEM images of the (a) $Fe_2O_3@KIT-6$ and (b) CuO@KIT-6 synthesized from $Fe(NO_3)_3\cdot 9H_2O@KIT-6$ and $Cu(NO_3)_2\cdot 3H_2O@KIT-6$, respectively.

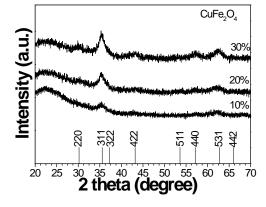
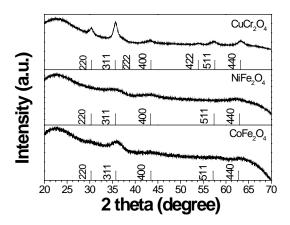



Figure S6. XRD patterns of CuFe₂O₄ with different loading amount.

Figure S7. XRD patterns of different bimetallic oxide nanoparticles supported on the mesoporous silica ($CuCr_2O_4$: 26-0509, $NiFe_2O_4$: 74-2081 and $CoFe_2O_4$: 01-1121).

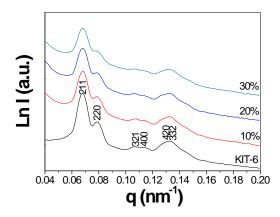
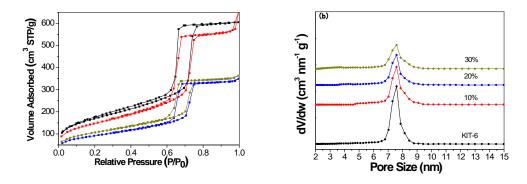
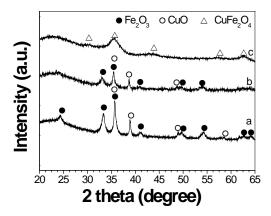
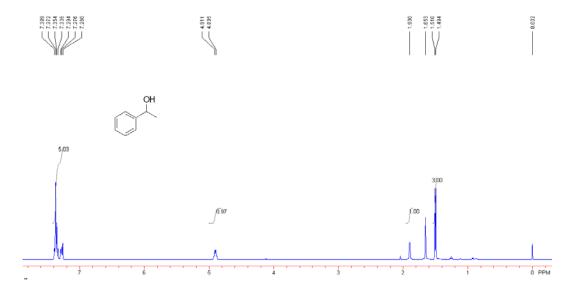


Figure S8. SAXS patterns of KIT-6 and $CuFe_2O_4@KIT$ -6 with $10 \sim 30 \%$ loading amount.

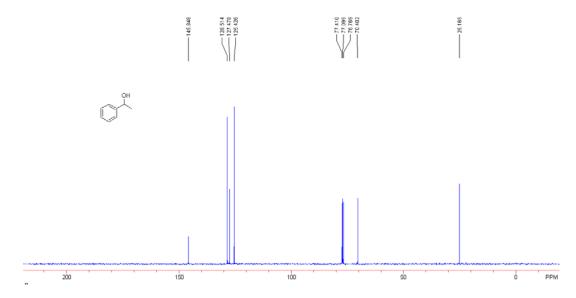

Figure S9. (a) N_2 adsorption-desorption isotherms and (b) their corresponding pore size distribution curves of KIT-6 support and $CuFe_2O_4@KIT$ -6 samples with different loading amounts. (black line: KIT-6, red line: 10%, blue line: 20%, dark yellow line: 30%).

Figure S10. XRD patterns of Sample-W calcined in different conditions: (a) 3 g of nitrate@KIT-6 intermediate calcined inside a 5 mL crucible with a cover, (b) 3 g of nitrate@KIT-6 intermediate calcined inside a 5 mL crucible without cover, (c) 0.5 g of nitrate@KIT-6 intermediate calcined in a petri dish without cover.

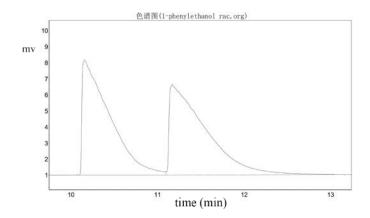


Figure S11. ¹H NMR spectrum of (*S*)-1-phenylethanol.

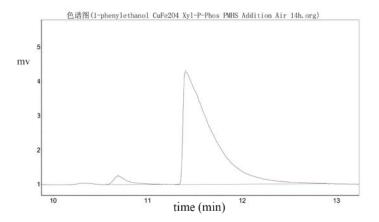


Figure S12. ¹³C NMR spectrum of (*S*)-1-phenylethanol.

The conversion and ee value were determined by Capillary GC with a $25m \times 0.25$ mm Chirasil-DEX CB column (Varian, carrier gas, N₂); 115 °C; isothermal; t_R (1a) = 4.62 min; t_R (R) = 10.16 min; t_R (S) = 11.17 min. Chromatograms are illustrated below for a 93% ee sample:

Peak	RetTime (min)	Height (mv)	Area (mv)	Area (%)
1	10, 160	7135. 186	157569. 375	49. 1491
2	11. 168	5587. 702	163024. 922	50.8508
Totals:		12722, 888	320594. 297	100.0000

Totals:				
Totals:	RetTime (min)	Height (mv)	Area (mv)	Area (%)
•	10. 687 11. 402	242. 752 3276. 666	2460, 502 68037, 898	3. 4902 96. 5098
总计	11.100	3519. 418	70498. 401	100. 0000

Figure S13. GC spectra of (*S*)-1-phenylethanol.