Supporting Information

Facile preparation of nanostructured α -Fe₂O₃ thin films with enhanced

photoelectrochemical water splitting activity

Gul Rahman^{1,2}, Oh-Shim Joo^{*,1}

¹ Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seongbukgu, Seoul 130-650, Republic of Korea

² Department of Clean Energy and Chemical Engineering, School of Science, University of Science and Technology, 52 Eoeun dong, Yuseong-gu, Daejeon 305-333, Republic of Korea

* To whom correspondence should be addressed, Email: joocat@kist.re.kr

Phone: +822-958-5215; Fax: +822-958-5807

Supporting Figures

Fig. S1 TGA plot of decomposition of Fe(III)-acetylacetonate in air.

Fig. S2 Raman spectra of the α -Fe₂O₃ films annealed at various substrate temperatures.

Fig. S 3 Photocurrent of the α -Fe₂O₃ films as a function of substrate temperatures. The measurements were done in the dark and under simulated solar light (AM 1.5 G 100 mW/cm²) in a 1 M NaOH electrolyte solution. The scan rate was 50 mV.s⁻¹. The films were deposited at 10 kV.

Fig. S 4 (a) STEM image of the α -Fe₂O₃ film prepared at 350 °C. (b) EDX spectrum. The film was grown at 20 kV.

Fig. S 5 Mott-Schottky plot for undoped and Ti-doped film and the α -Fe₂O₃ film prepared at 20 kV. The electrochemical impedance analysis was measured in 1 M NaOH in the dark, and the Mott – Schottky analysis was performed at 1000 Hz.