Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Synthesis and characterization of perovskite-type $BaMg_{0.33}Nb_{0.67-x}Fe_xO_{3-\delta}$ for potential high temperature CO_2 sensors application

Ramaiyan Kannan, Suresh Mulmi and Venkataraman Thangadurai*

Received (in XXX, XXX) XthXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

Supporting Information

- 1. Lattice constant variation as a function of Fe incorporation
- 2. EDX data of as-prepared samples
- 3. FT-IR spectra of BMN and BMNF samples before and after CO₂ treatment
- ¹⁰ 4. FT-IR spectra of the as-prepared BMN and BMNF samples
 - 5. TGA of the as-prepared BMN and BMNF samples
 - 6. FT-IR spectra of the H₂O vapor treated BMN and BMNF samples
 - 7. Response and recovery transients of BMNF17 and BMNF33 in synthetic air

Figure S1. Variation of lattice constant as a function of Fe concentration in $Ba(Mg_{0.33}Nb_{0.67-x}Fe_x)O_{3-5}\delta$.

2. EDX data of as-prepared samples

Table S1. EDX data obtained on the as-prepared perovskite-type $Ba(Mg_{0.33}Nb_{0.67-x}Fe_x)O_{3-\delta}(x = 0, 0.17, 0.33, 0.50)$.

10

Element	Atomic percentage (%)			
	BMN	BMNF17	BMNF33	BMNF50
Ba	25	25	32	22
Mg	8	12	7	6
Nb	18	15	11	7
Fe		6	11	12
0	49	42	39	53

3. FT-IR spectra of BMN and BMNF samples before and after CO₂ treatment

Figure S2. FT-IR spectra obtained on (1) BMN before CO_2 treatment (2) BMN after CO_2 treatment, (3) BMNF33 before CO_2 treatment, (4) BMNF33 after CO_2 treatment and (5) FT-IR of BaCO₃ commercial powder obtained from Alfa Aesar.

4. FT-IR spectra of the as-prepared BMN and BMNF samples

10

5

Figure S3. FT-IR spectra obtained on as-prepared BMN and BMNF samples.

5. TGA of the as-prepared BMN and BMNF samples

6. FT-IR spectra of the H₂O vapor treated BMN and BMNF samples

Figure S5. FT-IR spectra obtained BMN and BMNF samples after exposure to H_2O vapor at 90°C for 24 h.

5

10

7. Response and recovery transients of BMNF17 and BMNF33 in synthetic air

Figure S6. Response and recovery transients of (a) BMNF17 and (b) BMNF33 at various concentrations of dry synthetic air (21% O_2 in N_2) at 700 °C (Applied voltage = 0.1V). I, II, III and IV represent synthetic air concentrations corresponding to their 100, 500, 1000 and 1500 ppm of CO₂ balanced in dry synthetic air counterpart purged inside the gas-tight quartz cell, respectively.

This journal is © The Royal Society of Chemistry [year]